D because Carbon and Oxygen form covalent compounds. I wasn't the greatest at chem., but I'm pretty sure this is correct :D let me know if I gave you the right answer.
Answer:
The options are
a. occur inside organelles. b. start over continually. c. are part of the carbon cycle. d. allow energy to flow in ecosystems.
The answer is b. Start over continually
Explanation:
The two cycles involves a continuous process as long as the reactants are present under suitable conditions. The cycle happens all the time due to it being necessary to produce important products all the time for the body system.
A good example involves the existing Carbon dioxide and water reacting together to get converted into substance that could provide energy (ATP and NADH) such as Glucose.
Answer:
ΔG° of reaction = -47.3 x
J/mol
Explanation:
As we can see, we have been a particular reaction and Energy values as well.
ΔG° of reaction = -30.5 kJ/mol
Temperature = 37°C.
And we have to calculat the ΔG° of reaction in the biological cell which contains ATP, ADP and HPO4-2:
The first step is to calculate the equilibrium constant for the reaction:
Equilibrium Constant K = ![\frac{[HPO4-2] x [ADP]}{ATP}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHPO4-2%5D%20x%20%5BADP%5D%7D%7BATP%7D)
And we have values given for these quantities in the biological cell:
[HP04-2] = 2.1 x
M
[ATP] = 1.2 x
M
[ADP] = 8.4 x
M
Let's plug in these values in the above equation for equilibrium constant:
K = ![\frac{[2.1x10^{-3}] x [8.4x10^{-3}] }{[1.2 x 10^{-2}] }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2.1x10%5E%7B-3%7D%5D%20x%20%5B8.4x10%5E%7B-3%7D%5D%20%7D%7B%5B1.2%20x%2010%5E%7B-2%7D%5D%20%7D)
K = 1.47 x
M
Now, we have to calculate the ΔG° of reaction for the biological cell:
But first we have to convert the temperature in Kelvin scale.
Temp = 37°C
Temp = 37 + 273
Temp = 310 K
ΔG° of reaction = (-30.5
) + (8.314)x (310K)xln(0.00147)
Where 8.314 = value of Gas Constant
ΔG° of reaction = (-30.5 x
) + (-16810.68)
ΔG° of reaction = -47.3 x
J/mol
I think it would be A because hazardous waste would most likely be found in dust, fumes etc. I'm not sure though.