Answer:
These are the elements or compounds that enter into a chemical reaction: Reactants
These are the substance(s) formed in a chemical reaction: Products
These are the reactants in the chemical equation C6H1206 +602 --> 6CO2 + 6H20: C6H1206 and 602
These are the reactants in the chemical equation 6 CO2 + 6H2O --> C6H1206 + 6 02: 6 CO2 + 6H2O
These are the reactants in the chemical equation 2 H2 + 02 --> 2 H2O: 2H2 and O2
These are the reactants in the chemical equation 2 H2O --> 2 H2 + O2: 2H2O
To determine the k for the second condition, we use the Arrhenius equation which relates the rates of reaction at different temperatures. We do as follows:
ln k1/k2 = E / R (1/T2 - 1/T1) where E is the activation energy and R universal gas constant.
ln 1.80x10^-2 / k2 = 80000 / 8.314 ( 1/723.15 - 1/593.15)
k2 = 0.3325 L / mol-s
Answer:
See explanation and image attached
Explanation:
A bond line structure refers to any structure of a covalent molecule wherein the covalent bonds present in the molecule are represented with a single line for each level of bond order.
The bond-line structure of CH3CH2O(CH2)2CH(CH3)2 has been shown in the image attached. We know that oxygen has a lone pair of electrons and this has been clearly shown also in the image attached.
Boiling water results in no chemical change. If water is just heated to its boiling temperature then there is a physical change.