We can determine the empirical formula by first converting each of the grams to moles. remember to do this, first, we need the molar mass of the molecules which can be calculated by adding the mass of the atoms from the periodic table.
molar mass of CO2= 44.0 g/mol
molar mass of H2O= 18.02 g/mol
now, lets determine the grams of each atom
Carbon: 23.98 g x (12.011 g / 44.01 g) = 6.54 g C
Hydrogen: 4.91 g x (2.0158 g / 18.02 g) = 0.55 g H
Oxygen: 10.0 - (6.54 + 0.55) = 2.91 g O
Now let's convert each mass to moles.
C: 6.54 g / 12.01 g / mol = 0.54 mol
H: 0.55 g / 1.01 g/mol = 0.54 mol
O: 2.91 g / 16.00 g/mol = 0.18 mol
now that we have the moles of each atom, we need to divide them by the smallest value to find the ration. If you do not get the whole number, you need to multiply until to get a whole number.
C: 0.54 mol / 0.18 mol = 3
H: 0.54 mol / 0.18 mol = 3
O: 0.18 mol / 0.18 mol = 1
empirical formula--> C₃H₃O
D. uranium: atomic number 92, mass 238, neutrons 146
238-92=146
Mixing equal amounts of a strong acid with a strong base also produces a neutral pH (pH = 7) solution<span>.
</span>A neutralization reaction<span> is when an acid and a base</span>react<span> to form water and a salt and involves the combination of H</span>+<span> ions and OH</span>-<span> ions to generate water. The </span>neutralization<span> of a strong acid and strong base has a pH equal to 7.</span>