Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.
While terrestrial biomes are shaped by air temperature and precipitation, aquatic systems are characterized by factors such as water salinity, depth, and whether the water is moving or standing. If that's what you mean?
Balanced equation :
Cu(NO₃)₂(aq) + 2KOH(aq) → Cu(OH)₂(s) + 2KNO₃(aq)
Balancing a chemical equation :
A chemical equation shows us the substances involved in a chemical reaction - the substances that react (reactants) and the substances that are produced (products). In general, a chemical equation looks like this:
Reactant →Product
According to the law of conservation of mass, when a chemical reaction occurs, the mass of the products should be equal to the mass of the reactants. Therefore, the amount of the atoms in each element does not change in the chemical reaction. As a result, the chemical equation that shows the chemical reaction needs to be balanced. A balanced chemical equation occurs when the number of the atoms involved in the reactants side is equal to the number of atoms in the products side.
Learn more about balanced equation :
brainly.com/question/15355912
#SPJ4
Answer: 0.5 g/cm^3
Density equals mass divided by volume so..
60/120 is 0.5 g/cm^3
Grams. It is a smaller unit.