<h2>~<u>Solution</u> :-</h2>
- Here, to find the atomic mass of element, we must;
We know that,
- 4.6 x $ \sf{10^{22}}$ atoms of an element weigh 13.8g.
Thus,
The atoms of $ \sf{ 6.02 \times 10^{13}}$ will weigh;


- Hence, the molar mass (atomic mass) will be <u>180.6 g.</u>
Answer:
The combined gas law is formulated from PV/T =K.
Explanation:
The combined gas law comprises of Boyle's law, Charles's law and Gay lusaac's law. This laws were not discovered but simply put together considering other cases of ideal gas law. It states that if the amount of gas is left unchanged, the ratio between the pressure, volume, and temperature is constant.
Answer:
V= 12mL
Explanation:
you had the right idea with your Significant figures however, when we divide we see that it requires 2 significant figures as our least amount. this is because when looking at our division, 62 has 2 sig. fig. while 5.35 has a total 3. when looking at your answer we see that you had a total of 3 sig. figures. so in actuakity you had to round up to 12 and not to the tenths because the decimal makes .6 count as your third sig fig.
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.
<h3>
Answer:</h3>
56.11 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Compound] KOH
<u>Step 2: Identify</u>
[PT] Molar Mass of K - 39.10 g/mol
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mass of H - 1.01 g/mol
<u>Step 3: Find</u>
39.10 + 16.00 + 1.01 = 56.11 g/mol