Answer:
Explanation:
<u>1) Data:</u>
a) V = 93.90 ml
b) T = 28°C
c) P₁ = 744 mmHg
d) P₂ = 28.25 mmHg
d) n = ?
<u>2) Conversion of units</u>
a) V = 93.90 ml × 1.000 liter / 1,000 ml = 0.09390 liter
b) T = 28°C = 28 + 273.15 K = 301.15 K
c) P₁ = 744 mmHg × 1 atm / 760 mmHg = 0.9789 atm
d) P₂ = 28.5 mmHg × 1 atm / 760 mmHg = 0.0375 atm
<u>3) Chemical principles and formulae</u>
a) The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. Hence, the partical pressure of the hydrogen gas collected is equal to the total pressure less the vapor pressure of water.
b) Ideal gas equation: pV = nRT
<u>4) Solution:</u>
a) Partial pressure of hydrogen gas: 0.9789 atm - 0.0375 atm = 0.9414 atm
b) Moles of hygrogen gas:
pV = nRT ⇒ n = pV / (RT) =
n = (0.9414 atm × 0.09390 liter) / (0.0821 atm-liter /K-mol × 301.15K) =
n = 0.00358 mol (which is rounded to 3 significant figures) ← answer
Molar mass :
NaBr = 103 g/mol
Pb(NO3)2 = 331.20 g/mol
<span><span /><span>Balanced chemical equation :
</span></span>2 NaBr + 1 Pb(NO3)2 = 2 NaNO3 + 1 PbBr<span>2
</span><span>
2*103 g NaBr ------------> 1 * 331.20 g Pb(NO3)2
g NaBr -------------------> 311 g Pb(NO3)2
331.20 g = 2*103*311
331.20 g = 64066
mass ( NaBr ) = 64066 / 331.20
mass ( naBr) = 193,43 g of NaBr
hope this helps!.
</span>
It has a trigonal planar structure. So, the calculated angle is 127.3 degrees.
You can see the structure in the picture.
In order to answer this question, the dimensions of the brick in centimetres need to the converted to dimensions in metres. In order to convert centimetres to metres you need to divide by 100. Doing this yields brick dimensions of 0.15 m x 0.06 m x 0.12 m. Multiplying the length, width and height together yields the volume of 0.00108 cubic metres.