Answer:
d = 27.7 m
Explanation:
Here the car is driving on the inclined plane
So here we can say that work done by the gravity and work done by friction is equal to change in kinetic energy of the system
So here we can write it as

now we have
m = 1700 kg






Explanation:
Given Data
Total mass=93.5 kg
Rock mass=0.310 kg
Initially wagon speed=0.540 m/s
rock speed=16.5 m/s
To Find
The speed of the wagon
Solution
As the wagon rolls, momentum is given as
P=mv
where
m is mass
v is speed
put the values
P=93.5kg × 0.540 m/s
P =50.49 kg×m/s
Now we have to find the momentum of rock
momentum of rock = mv
momentum of rock = (0.310kg)×(16.5 m/s)
momentum of rock =5.115 kg×m/s
From the conservation of momentum we can find the wagons momentum So
wagon momentum=50.49 -5.115 = 45.375 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
Speed of wagon=45.375/(93.5-0.310)
Speed of wagon= 0.487 m/s
Throwing rock backward,
momentum of wagon = 50.49+5.115 = 55.605 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
speed of wagon = 55.605 kg×m/s/(93.5kg-0.310kg)
speed of wagon= 0.5967 m/s
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
This is A.) lake. A river is a small amount of water that isn't always fresh water. A stream is too small. And an ocean is made of salt water.