Answer:
incorrect
Step-by-step explanation:
this is because it would be 1/2 and 1/6. you would have to multiply the bases for a probability of 1/12
Answer:
-5
Step-by-step explanation:
You can work backwards with this problem if that helps you.
so, what times 3 = -15
-5 times 3 = -15 so that would be the answer
It looks like the differential equation is

Check for exactness:

As is, the DE is not exact, so let's try to find an integrating factor <em>µ(x, y)</em> such that

*is* exact. If this modified DE is exact, then

We have

Notice that if we let <em>µ(x, y)</em> = <em>µ(x)</em> be independent of <em>y</em>, then <em>∂µ/∂y</em> = 0 and we can solve for <em>µ</em> :

The modified DE,

is now exact:

So we look for a solution of the form <em>F(x, y)</em> = <em>C</em>. This solution is such that

Integrate both sides of the first condition with respect to <em>x</em> :

Differentiate both sides of this with respect to <em>y</em> :

Then the general solution to the DE is

Answer:
Total area = 237.09 cm²
Step-by-step explanation:
Given question is incomplete; here is the complete question.
Field book of an agricultural land is given in the figure. It is divided into 4 plots. Plot I is a right triangle, plot II is an equilateral triangle, plot III is a rectangle and plot IV is a trapezium, Find the area of each plot and the total area of the field. ( use √3 =1.73)
From the figure attached,
Area of the right triangle I = 
Area of ΔADC = 
= 
= 
= 
= 
= 30 cm²
Area of equilateral triangle II = 
Area of equilateral triangle II = 
= 
= 73.0925
≈ 73.09 cm²
Area of rectangle III = Length × width
= CF × CD
= 7 × 5
= 35 cm²
Area of trapezium EFGH = 
Since, GH = GJ + JK + KH
17 = 
12 = 
144 = (81 - x²) + (225 - x²) + 2
144 - 306 = -2x² + 
-81 = -x² + 
(x² - 81)² = (81 - x²)(225 - x²)
x⁴ + 6561 - 162x² = 18225 - 306x² + x⁴
144x² - 11664 = 0
x² = 81
x = 9 cm
Now area of plot IV = 
= 99 cm²
Total Area of the land = 30 + 73.09 + 35 + 99
= 237.09 cm²
Answer:
A.) gf(x) = 3x^2 + 12x + 9
B.) g'(x) = 2
Step-by-step explanation:
A.) The two given functions are:
f(x) = (x + 2)^2 and g(x) = 3(x - 1)
Open the bracket of the two functions
f(x) = (x + 2)^2
f(x) = x^2 + 2x + 2x + 4
f(x) = x^2 + 4x + 4
and
g(x) = 3(x - 1)
g(x) = 3x - 3
To find gf(x), substitute f(x) for x in g(x)
gf(x) = 3( x^2 + 4x + 4 ) - 3
gf(x) = 3x^2 + 12x + 12 - 3
gf(x) = 3x^2 + 12x + 9
Where
a = 3, b = 12, c = 9
B.) To find g '(12), you must first find the inverse function of g(x) that is g'(x)
To find g'(x), let g(x) be equal to y. Then, interchange y and x for each other and make y the subject of formula
Y = 3x + 3
X = 3y + 3
Make y the subject of formula
3y = x - 3
Y = x/3 - 3/3
Y = x/3 - 1
Therefore, g'(x) = x/3 - 1
For g'(12), substitute 12 for x in g' (x)
g'(x) = 12/4 - 1
g'(x) = 3 - 1
g'(x) = 2.