P has three unpaired electrons
Answer:
See explanation and image attached
Explanation:
The standard cell potential at 298 K is given by;
E°cathode - E°anode
Hence;
E°cell = 0.34 V - (-0.76 V)
E°cell = 0.34 V + 0.76 V
E°cell = 1.1 V
To reduce Zn^2+ to Zn then Zn must be the cathode, hence;
E°cell = (-0.76 V) - 0.34 V
E°cell = -1.1 V
Mass C₂H₂ needed : 22.165 g
<h3>Further explanation</h3>
Reaction
2C₂H₂+
5O₂ ⇒ 4CO₂ + 2H₂O
75.0 grams of CO₂ , mol CO₂ (MW=44 g/mol) :

mol C₂H₂ :

mass C₂H₂ (MW=26 g/mol) :

<span>While explaining the differences between the rate law and integrated rate law of the reaction, two statements apply from the options. They are
1. The rate law shows the relationship between the rate of a reaction and the concentrations of the reactants. This will give us an idea about the speed that reactants are turned to compounds and products.
2. The integrated rate law is a relationship between the concentration of a reactant and time. This gives an idea of amount of reactant left after a period of time.</span>
Answer:
Koverall [NO]^2 [Br2]
Balanced chemical reaction equation;
2NO + Br2 ⇄2NOBr
Explanation:
Consider the first step in the reaction;
NO(g) + Br2(g) ⇄ NOBr2(g) fast
The second step is the slower rate determining step
NOBr2(g) + NO(g) ⇄ 2NOBr(g)
Given that k1= [NOBr2]/[NO] [Br2]
k2= [NOBr2] [NO]
The concentration of the intermediate is now;
[NOBr2]= k1[NO][Br2]
It then follows that overall rate of reaction is
Rate= k1k2[NO]^2 [Br2]
Since k1k2=Koverall
Rate= Koverall [NO]^2 [Br2]