If the distance around the equator is reduced by half, then the radius is also reduced by half.
Since the acceleration due to gravity is proportional to 1/(radius²),
the acceleration changes by a factor of 1/(1/2)² = 1/(1/4) = <em>4 </em>.
The acceleration due to gravity ... and also the weight of everything on Earth ...
becomes <em>4 times what it is now</em>.
Answer:
Option D
670 Kg.m/s
Explanation:
Initial momentum is given by mv=82*5.6=459.2 Kg.m/s (taking eastward as positive)
Final momentum is also mv but v being westward direction, we take it negative
Final momentum=82*-2.5= -205 Kg.m/s
Change in momentum=Final momentum-Initial momentum=-205-459.2=-664.2 Kg.m/s
Impulse=change in momentum=664.2 Kg.m/s rounded off as 670 Kg.m/s
Answer:
The two forces acting on rockets at the moment of launch are the thrust upwards and the weight downwards. Weight is the force due to gravity and is calculated (at the Earth’s surface) by multiplying the mass (kilograms) by 9.8.The resultant force on each rocket is calculated using the equation resultant force = thrust – weight.
Hopefully, this answer helps you! :)