Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

<span>d. 93 billion miles
</span>Earth, being the third planet from the sun is unique in the universe because it is currently the only planet known to support life. Earth's distance from the sun is really one of the key reasons why it is has widespread life.Earth occupies what scientists sometimes call the Goldilocks zone. Its distance from the sun means its neither too hot nor too cold to support liquid water. Water is thought to be a key ingredient for life.<span> The energy from the sun in just the right intensity and the availability of water on the earth make it possible for life to thrive on earth. Plants use both these resources for photosynthesis and make nutrients that are available to support the life of animals on the earth. </span>
Answer:
c large, spherical body that orbits in a clear path around a star
Explanation:
you can not say b because the sun is a star and you cant say a and d because all planets are not made of rock and all planets are not made of gas
Answer:
the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.
Explanation:
This exercise asks to describe the inflation situation of a spherical fultball.
Initially the balloon is deflated, therefore the internal pressure is equal to the pressure of the air outside, atmospheric pressure, when it begins to inflate the balloon with a pump this creates a pressure in the inlet valve and as it is greater than the pressure inside, the air enters it, this is repeated in each filling cycle, manual pump.
When the ball is full we have two forces, the one created by the external walls and the one aired by the pressure of the pump, these forces are directed towards the inside, but the air molecules exert a pressure towards the outside, which translates into a force. When these two forces are equal, the pump is no longer able to continue introducing air into the balloon.
Consequently the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.