It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).
What language is even this Oop i DONT know good luck
<span>the molar mass of a compound is the sum of the products of the atomic masses by the number of atoms of the element.
molar mass of Na</span>₂SO₄<span> is - 142 g/mol.
1 mol of </span>Na₂SO₄<span> has a mass of 142 g.
In 1 mol of </span>Na₂SO₄<span> the mass of Na is 23 g/mol x 2 = 46 g.
Mass of Na in 1 mol of </span>Na₂SO₄ is - 46 g
mass of Na in 0.820 mol of Na₂SO₄ - 46 g /1 mol x 0.820 mol = 37.72 g.
mass of Na is 37.72 g
I forgot what quantum means to be honest, the Bohr model In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity. After the cubical model (1902), the plum pudding model (1904), the Saturnian model (1904), and the Rutherford model (1911) came the Rutherford–Bohr model or just Bohr model for short (1913). The improvement over the 1911 Rutherford model mainly concerned the new quantum physical interpretation.