I would say it’s “B” for the reason that the student did not experiment with a short ramp and large ball as well as a large ramp and a short ball. They have to do those experiments as well before drawing their conclusion.
Answer:
opposite the sun. between the Earth and the sun. rising perpendicular to the sun.
Explanation:
Alkali metals: left column of your periodic table (not hydrogen, but anything below it). They have one valence electron, which they are happy to share in a reaction.
Halogens: second column from the right of your periodic table. They are one electron short of a full shell, so they are reactive in the opposite way that alkalis are--they want electrons.
Atomic number (number of protons) is the big number on the periodic table square. Hydrogen's is 1.
Atomic mass is a little number down below. For example, Hydrogen's is 1.008.
Neutrons are a tricky subject, because different isotopes of the same element can have different numbers of neutrons. You can't generally get this from the atomic mass, because the atomic mass is a weighted average of naturally occurring isotopes. Hydrogen can have 0,1, or 2 neutrons. To answer this, you'd have to choose a particular isotope from the table of isotopes (a completely different chart from the periodic table) which has a certain number of neutrons: n = weight - Z.
Valence electrons are the electrons in the outermost shell. (The column of the table).
<span>
Number of principal shells is the row of the periodic table. </span>
That's the period of time known as one solar "day". We subdivide it into 24 slices which we call "hours". Using this system of time units, the day is about 4 minutes longer than one complete axial rotation of the Earth.