10 electrons
Explanation:
The maximum number of electrons in a single d-subshell is 10 electrons.
The d-notation stands for an azimuthal quantum number or secondary quantum number.
This subshell can only accommodate a maximum of 10 electrons.
d- subshell has five orbitals
Each orbital is able to accommodate 2 electrons.
Therefore 5 x 2 = 10 electrons
learn more:
Atomic orbital brainly.com/question/1832385
#learnwithBrainly
V
1
/T
1
=V
2
/T
2
(900.0 mL) / (300.0 K) = (x) / (405.0 K); x = 1215 mL.
Change the 900 to 800, and the 300 to 27, then change the 405 to 132. And solve
Answer:
The calcium concentration must be greater outside the cell than inside the cell.
Explanation:
My previous answer was deleted from the explanation I provided from another website.
Answer:
Lowering the temperature typically reduces the significance of the decrease in entropy. That makes the Gibbs Free energy of the reaction more negative. As a result, the reaction becomes more favorable overall.
Explanation:
In an addition reaction there's a decrease in the number of particles. Consider the hydrogenation of ethene as an example.
.
When
is added to
(ethene) under heat and with the presence of a catalyst,
(ethane) would be produced.
Note that on the left-hand side of the equation, there are two gaseous molecules. However, on the right-hand side there's only one gaseous molecule. That's a significant decrease in entropy. In other words,
.
The equation for the change in Gibbs Free Energy for a particular reaction is:
.
For a particular reaction, the more negative
is, the more spontaneous ("favorable") the reaction would be.
Since typically
for addition reactions, the "entropy term" of it would be positive. That's not very helpful if the reaction needs to be favorable.
(absolute temperature) is always nonnegative. However, lowering the temperature could help bring the value of
For the same amount of energy, the number of photons in red light will be greater than the number of photons in blue light.
This is because the energy carried by a photon is inversely proportional to the wavelength of the photon. A longer wavelength means there is a lower energy in the photons and a shorter wavelength means that there is a higher energy. Therefore, in order for the photons to deliver one joule of energy, more of the red light photons will be required.