The ionic compound for AlBr3 is ↓
Aluminum Bromide
Something made of pure iron<span> is softer </span>than steel<span> because the atoms can slip over one another. If other atoms like carbon are added, they are different from </span>iron<span> atoms and stop the </span>iron<span> atoms from sliding apart so easily. This makes the metal </span>stronger<span> and </span>harder<span>.</span>
Answer:
1. 4-ethyl-1-heptene
2. 6-ethyl-2-octene
3. 1-butyne
Explanation:
The compounds are named according to IUPAC rules.
Compound 1:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 7 carbon atoms, so taken the name hept.
- The double bond between C1 and C2, so take no. 1 and add the suffix ene to hept "1-heptene".
- The ethyl group is the alkyl substituent on position 4.
- So the name is 4-ethyl-1-heptene.
Compound 2:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 8 carbon atoms, so taken the name oct.
- The double bond between C2 and C3, so take no. 2 and add the suffix ene to oct "2-octene".
- The ethyl group is the alkyl substituent on position 6.
- So the name is 6-ethyl-2-octene.
Compound 3:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain), there is no substituents.
- The parent chain is numbered so that the multiple bonds have the lowest numbers (Triple bond here take the lowest number).
- The longest chain contains 4 carbon atoms, so taken the name but.
- The triple bond between C1 and C2, so take no. 1 and add the suffix yne to but "1-butyne".
Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C
There are 7 signifigant figures in this number!