According to Osmotic pressure equation:
π = i M R T
When π =0.307 atm & M = 0.01 mol & R (constant)= 0.0821 L-atom/mol-K &
T= 22+273 = 295 Kelvin
So Van't half vector i = π / (MRT)
= 0.307 / (0.01 * 0.0821 * 295)
= 1.27
When there is no dissociation, i = no. of moles of Hf in 1 L of solution = (1-X)
and when there is a complete dissociation so it is equal 2X according to this equation
HF(aq) + H2O (L) ⇆ H3O (aq) + F (aq)
(1-X) X X
∴ i = (1-X) + (2x)
1.27 = 1+X
∴X= 1.27 - 1 = 0.27
∴ the percent ionization of the acid X = 27 %
The answer is A. this process is only in the research phase
The process of fusion involves merging of atomic nuclei to
form heavier nuclei resulting in the release of enormous amounts of energy.
Fusion takes place when two low mass isotopes, typically isotopes of hydrogen,
unite under conditions of extreme pressure and temperature. Scientists continue
to work on controlling nuclear fusion in an effort to make a fusion reactor to
produce electricity. However, progress is slow due to challenges with
understanding how to control the reaction in a contained space.
Complete Question:
check the first image for complete part of the question
Answer and Explanation:
Epoxide is a three membered ring made up of two carbon atoms and one oxygen atom. Epoxides are cyclic ethers. Due to its ring size, it is highly strained and very reactive. Epoxide ring opening takes place with respect to addition of acid and base.
Ring opening of epoxide with acid:
In the presence of base, the nucleophile attacks the epoxide ring at more substituted site and inverse stereochemistry takes place.(check file 2 attached)
Ring opening of epoxide with base:
The backside attack of nucleophile takes place in less substituted site and then it undergoes protonation to form a product.
(check file 2 attached)
No. The only thing that changed was the looks of the gasoline, not the chemical components.