Answer:
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
<em>Which of the statements correctly describe the properties of a buffer?</em>
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution. TRUE. The conjugate base neutralizes the excess of hydrogen protons.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base. TRUE.
c. An acidic buffer solution is a mixture of a weak base and its conjugate acid. FALSE. This is a basic buffer solution.
d. The weak acid of an acidic buffer will accept hydrogen protons when a strong base is added to the solution. FALSE. The weak acid will react with the hydroxyl ions from the added base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution. TRUE. These hydrogen protons will form water.
f. The conjugate base of an acidic buffer will donate hydrogen protons when a strong acid is added to the solution. FALSE. It will accept hydrogen protons.
A long chain of hydrocarbon bonded to COOH is a FATTY acid.
14,200 because all you have to do to solve this is multiply 14.2 kilometers by 1,000 meters to find the distance that he walks.
Answer:
Gallium, Phosphorus, Chlorine, Fluorine
Explanation:
Arrange the elements in order of increasing ionization energy. Use the periodic table to identify their positions on the table.
Drag each tile to the correct box.
Tiles
chlorinefluorinegalliumphosphorus
Sequence
The concentration of a solution can be expressed in (4) <span>moles per liter~</span>