1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SSSSS [86.1K]
3 years ago
6

Which of the following does not use electromagnetic radiation? (Check all that apply)

Physics
1 answer:
Nesterboy [21]3 years ago
3 0
I know that refrigerator units do not use electromagnetic radiation
I am not certain about plasma however I believe it doeant either
You might be interested in
Atoms that are bonded together to form a new material with new<br> properties and characteristics. .
mihalych1998 [28]

Answer:

Explanation:

Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.

7 0
2 years ago
Given:A=6x-2y B:-4x-8y C:-3x+9y. Commute A+B-C
DedPeter [7]
<span>A+B-C
</span><span>A = 6x - 2y
B = -4x - 8y
C = -3x + 9y

(</span>6x - 2y) + (-4x - 8y) - (-3x + 9y)
(6x - 2y) + (-4x - 8y) + (3x - 9y)
2x -10y + (3x - 9y)

5x - 19y
8 0
3 years ago
A car of mass 1000 kg travelling at a velocity of 25 m/s collides with another car of mass 1500kg which is at rest. The two cars
Svetach [21]

Answer:

<em>The velocity of the two cars is 10 m/s after the collision.</em>

Explanation:

<u>Law Of Conservation Of Linear Momentum </u>

The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and velocity v is

P=m.v

If we have a system of bodies, then the total momentum is the sum of them all

P=m_1v_1+m_2v_2+...+m_nv_n

If some collision occurs, the velocities change to v' and the final momentum is:

P'=m_1v'_1+m_2v'_2+...+m_nv'_n

In a system of two masses, the law of conservation of linear momentum  takes the form:

m_1v_1+m_2v_2=m_1v'_1+m_2v'_2

If both masses stick together after the collision at a common speed v', then:

m_1v_1+m_2v_2=(m_1+m_2)v'

The car of mass m1=1000 Kg travels at v1=25 m/s and collides with another car of m2=1500 Kg which is at rest (v2=0).

Knowing both cars stick and move together after the collision, their velocity is found solving for v':

\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}

\displaystyle v'=\frac{1000*25+1500*0}{1000+1500}

\displaystyle v'=\frac{25000}{2500}

v' = 10 m/s

The velocity of the two cars is 10 m/s after the collision.

4 0
3 years ago
Block A of mass M is at rest and attached to the top of a spring. The block compresses the spring a distance d from its uncompre
Anni [7]

Answer:

a)  k = Mg / d , b)   v = √2gh , c)  v_{f} = \frac{2}{3} \ \sqrt{2gh},  d)   x² + 6d x - \frac{8}{3} dh = 0

e)the spring must compress a greater distance.

Explanation:

a) when the block of mass M is placed on the spring, we have an equilibrium condition,

             ∑ F  = 0

             F_{e}- W = 0

             k d = Mg

             k = Mg / d

b) let's use the concepts of energy to find the velocity of the block just before the collision

starting point. Position when released

          Em₀ = U = m g h

lowest point. Right at the point of shock

          Em_{f} = K = ½ m v²2

as there is no friction, energy is conserved

          Em₀ = Em_{f}

          mg h = ½ m v²

          v = √2gh

         

c) The velocity of the two blocks after the collision, we define a system formed by the two blocks, in such a way that the forces during the collision are internal and the moment is conserved

initial instant. Just before the crash

          p₀ = 2M v + M 0

final instant. Just after the shock, before the spring compression begins

         p_{f} = (2M + M) v_{f}

 the moment is preserved

          p₀ = p_{f}

          2M v = 3M v_{f}

          v_{f} = ⅔ v

          v_{f} = \frac{2}{3} \ \sqrt{2gh}

d) now we work with the joined system after the collision, let's use the concepts of energy

starting point. After shock, before beginning spring compression

        Em₀ = K = ½ (3M) v_{f}^2

        Em₀ = 3/2 M (\frac{2}{3} \ \sqrt{2gh})²

        Em₀ = 4/3 M gh

final point. With the spring fully compressed

       Em_f = K_e + U = ½ k x² + (3M) g x

in this case we have taken the zero of gravitational potential energy at the point where the blocks collide, as there is no friction, the energy is conserved

         Em₀ = Em_f

        4/3 M g h = ½ k x² + 3M g x

        ½ k x² + 3Mg x - 4/3 Mgh = 0

we substitute the expression for k

         \frac{1}{2} (\frac{Mg}{d}) x² + 3Mg x - \frac{4}{3} Mgh = 0

          \frac{x^{2} }{2d} + 3 x - \frac{4}{3}h = 0

to find the value of the spring compression, the second degree equation must be solved

          x² + 6d x - \frac{8}{3} dh = 0

         x = [-6d ±\sqrt{(36 d^{2} - 4 \frac{8}{3} dh)  } ] / 2

         x = [-6d ± 6d \sqrt{ 1 -  \frac{32}{3 \ 36}  \ \frac{h}{d}    }  ]/2

         x = 3d ( -1±  \sqrt{ 1 - 0.296 \frac{h}{d}   }  )

e) If the collision elastic force would not lose any part of the kinetic energy during the collision, therefore the speed of the block of mass M would be much higher and therefore the spring must compress a greater distance.

8 0
3 years ago
Question 15
lozanna [386]

Answer:

Time use of cellphone times 3 hours before sleep.

Explanation:

It is scientifically proven that cell-phone use before bed can disturb your sleep. The blue light can cause your brain to release chemicals that associate with staying awake or even waking up. So measure the hours or minutes you use your phone 3 hours before you go to sleep.

8 0
3 years ago
Other questions:
  • 3. During a race, a sprinter increases from 5.0 m/s to 7.5 m/s over a period of 1.25s. What is the sprinter’s average accelerati
    9·1 answer
  • 18)
    11·1 answer
  • After heating a 10.00 g sample of potassium chlorate, a student obtains an amount of oxygen calculated to be 3.90 g. Theoretical
    6·1 answer
  • When you calculate the SLOPE of a line segment, what does the SLOPE represent? (Choose all that apply) the Distance traveled the
    9·1 answer
  • a cricket ball of 70g moving with a velocity of 0.5 m/s is stopped by a player in 0.5s what is the force applied to stop the bal
    8·1 answer
  • Consider the following waves representing electromagnetic radiation: An illustration shows two waves representing electromagneti
    9·1 answer
  • Two cars are traveling along a straight line in the same direction, the lead car at 24.7m/s and the other car at 29.9m/s. at the
    6·1 answer
  • Definition: The energy transferred by a force to a moving object.
    10·1 answer
  • Allen and Jason are chucking a speaker around. On one particular throw, Allen throws the speaker, which is playing a pure tone o
    13·1 answer
  • PLEASE HELP NEED ANSWER NOW!!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!