Answer:

Negative sign shows that velocity of the car is decreases at a constant rate
Explanation:
We have given velocity of the car is decreases from 32 m /sec to 24 m/sec in 4 second
So initial velocity of the car u = 32 m /sec
And finally car reaches to a velocity of 24 m/sec
Time taken to change in velocity = 4 sec
So final velocity v = 24 m/sec
From first equation of motion v = u+at
So 

Negative sign shows that velocity of the car is decreases at a constant rate
Answer:
The radius of the disc is 2.098 m.
(e) is correct option.
Explanation:
Given that,
Moment of inertia I = 12100 kg-m²
Mass of disc m = 5500 kg
Moment of inertia :
The moment of inertia is equal to the product of the mass and square of the radius.
The moment of inertia of the disc is given by

Where, m = mass of disc
r = radius of the disc
Put the value into the formula



Hence, The radius of the disc is 2.098 m.
I think the answer is “greenhouse effect”
The monomer of glucose makes up all carbohydrates
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.