We know that the Delta E + W(Work done by non-conservative
forces) = 0 (change of energy)
In here, the non-conservative force is the friction force
where f = uN (u =kinetic friction coefficient)
W= f x d = uNd ; N=mg
Delta E = 1/2 mV^2 -1/2mVi^2
umgd + 1/2mV^2 - 1/2mVi^2 = 0 (cancel out the m term)
This will then give us:
1/2Vi^2-ugd = 1/2V^2
V^2 = Vi^2 - 2ugd
So plugging in our values, will give us:
V= Sqrt (5.6^2 -2.3^2)
=sqrt (26.07)
= 5.11 m/s
Answer:
1050 kg
Explanation:
The formula for kinetic energy is:
KE (kinetic energy) = 1/2 × m × v² where <em>m</em> is the <em>mass in kg </em>and <em>v</em> is the velocity or <em>speed</em> of the object <em>in m/s</em>.
We can now substitute the values we know into this equation.
KE = 472 500 J and v = 30 m/s:
472 500 = 1/2 × m × 30²
Next, we can rearrange the equation to make m the subject and solve for m:
m = 472 500 ÷ (1/2 × 30²)
m = 472 500 ÷ 450
m = 1050 kg
Hope this helps!
By the admiring tone that the writer has for the gift that she/he received, it is clear that there's a lot of imagery. The writer also described the rose as "perfect", "scented dew still wet", and "pure", which further supports the idea that he/she is describing the gift.