1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
3 years ago
9

If an object undergoes a change in momentum of 10 kg m/s in 3 s ,then the force acting on it is

Physics
1 answer:
Paha777 [63]3 years ago
8 0

Answer:

Force = 3.333 Newton

Explanation:

Given the following data;

Change in momentum = 10 Kgm/s

Time = 3 seconds

To find the force acting on it;

In Physics, the change in momentum of a physical object is equal to the impulse experienced by the physical object.

Mathematically, it is given by the formula;

Force * time = mass * change in velocity

Impulse = force * time

Substituting into the formula, we have;

10 = force * 3

Force = 10/3

Force = 3.333 Newton

You might be interested in
When researching online, as long as the gathered information is the result of a valid Internet search engine, it is not necessar
SashulF [63]
False,it could be false information like Wikipedia
7 0
3 years ago
What sport does not require a high level of fitness
Sveta_85 [38]
Rock climbing. Free diving. Sky diving. Dog sledding.
8 0
2 years ago
Use Hooke's Law to determine the work done by the variable force in the spring problem. A force of 350 newtons stretches a sprin
Bingel [31]

Answer:

Explanation:

350 N force stretches the spring by 30 cm

spring constant K = 350 / 0.30 = (350 / 0.3) N / m

To calculate work done by a spring force we proceed as follows

spring force when the spring is stretched by x = Kx

This force is variable so work done by it can be calculated by integration

Work done by it in stretching from x₁ to x₂

W = ∫ F dx

= ∫ Kx dx with limit from x₁ to x ₂

= 1/2 K ( x₂² - x₁² )

Putting the given values of x₁ = 0.50 m , x₂ = 0.8 m

Work done

= 1/2 x (350 / 0.3)x ( 0.80² - 0.50² )

= 227.50 J

5 0
3 years ago
N experiment is performed in deep space with two uniform spheres, one with mass 27.0 and the other with mass 107.0 . They have e
Reptile [31]

Answer:

Explanation:

Apply the law of conservation of energy

KE_i+PE_i=KE_f+PE_f

Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)

from the law of conservation of the linear momentum

m_1v_1=m_2v_2

Therefore,

Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)

=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]

v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]

Substitute the values in the above result

v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]

=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s

B)  the speed of the sphere with mass 107.0 kg is

v_2=\frac{m_1v_1}{m_2}

=[\frac{27}{107} ](1.2664 \times 10^-^5)\\\\=3.195\times 10^-^6m/s

C)  the magnitude of the relative velocity with which one sphere is

v_r=v_1+v_2\\\\=1.2664\times 10^-^5+3.195\times10^-^6\\\\=15.859\times10^-^6m/s

D) the distance of the centre is proportional to the acceleration

\frac{x_1}{x_2} =\frac{a_1}{a_2} \\\\=\frac{m_2}{m_1} \\\\=3.962

Thus,

x_1=3.962x_2

and

x_2=0.252x_1

When the sphere make contact with eachother

Therefore,

x_1+x_2+2r=41\\x_1+0,252x_1+2r=41\\1.252x_1+2r=41\\x_1=32.747-1.597r

And

x_1+x_2+2r=41\\3.962x_2+x_2+2r+41\\4.962x_2+2r=41\\x_2=8.262-0.403r

The point of contact of the sphere is

32.747-1.597r=8.262-0.403r\\\\r=\frac{24.485}{1.194} \\\\=20.506m

3 0
3 years ago
Physicists often measure the momentum of subatomic particles moving near the speed of light in units of MeV/c, where c is the sp
maxonik [38]

Answer:

kg m/s

Explanation:

e = Charge = C

V = Voltage = \dfrac{N}{C}m

c = Speed of light = m/s

Momentum is given by

\dfrac{MeV}{c}=\dfrac{e\times V}{c}\\\Rightarrow \dfrac{MeV}{c}=\dfrac{C\times \dfrac{N}{C}\times m}{m/s}\\\Rightarrow \dfrac{MeV}{c}=Ns\\\Rightarrow \dfrac{MeV}{c}=kg\times \dfrac{m}{s}\times s\\\Rightarrow \dfrac{MeV}{c}=kg\cdot m/s

The unit of MeV/c in SI fundamental units is kg m/s

5 0
3 years ago
Other questions:
  • Which best describes the current atomic model?
    11·2 answers
  • Calculate the displacement of the volleyball in sample problem 2f when teh volleyballs final velocity is 1.1 m/s upward
    7·1 answer
  • What is the relationship between the slope of the position graph of an object and its velocity?
    6·1 answer
  • A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 Joules (with the poten
    12·1 answer
  • What are SI units, and why are they used?
    5·2 answers
  • A force of 9.6 N acts on a 5.1 kg object for 8.2 s. Calculate the object's change in velocity (in m/s).​
    8·1 answer
  • Two horizontal forces, 230 N and 120 N, are exerted in opposite direction on a crate. What is the horizontal acceleration of the
    9·1 answer
  • 04 What is the pressure 40m under the sea if sea water has a density of 1100kg/m3? (atmospheric pressure is 101kPa)
    14·1 answer
  • If the ambient temp. is 75 F, what is it Centigrade?
    9·1 answer
  • How does the long shape of submarines and torpedoes reduce the dragthey feel when moving under water?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!