1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
15

A speed boat moving at a velocity of 25 m/s runs out of gas and drifts to a stop 3 minutes later 100 meters away. What is its ra

te of deceleration?
Physics
1 answer:
mr_godi [17]3 years ago
5 0
<h2>Answer:</h2>

The rate of deceleration is -0.14m/s^{2}

<h2>Explanation:</h2>

Using one of the equations of motion;

v = u + at

where;

v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)

u = initial velocity of the boat = 25m/s

a = acceleration of the boat

t = time taken for the boat to accelerate/decelerate from u to v =   3 minutes

<em>Convert the time t = 3 minutes to seconds;</em>

=> 3 minutes = 3 x 60 seconds = 180seconds.

<em>Substitute the values of v, u, t into the equation above. We have;</em>

v =  u + at

=> 0 = 25 + a(180)

=> 0 = 25 + 180a

<em>Make a the subject of the formula;</em>

=> 180a = 0 - 25

=> 180a = -25

=> a = -25/180

=> a = -0.14m/s^{2}

The negative value of a shows that the boat is decelerating.

Therefore, the rate of deceleration of the speed boat is 0.14m/s^{2}

You might be interested in
A discus thrower turns with angular acceleration of 50 rad/s2, moving the discus in a circle of radius 0.80m. Find the radial an
anyanavicka [17]

Answer:

The value of tangential acceleration \alpha_{t} =  40 \frac{m}{s^{2} }

The value of radial acceleration \alpha_{r} = 80 \frac{m}{s^{2} }

Explanation:

Angular acceleration = 50 \frac{rad}{s^{2} }

Radius of the disk = 0.8 m

Angular velocity = 10 \frac{rad}{s}

We know that tangential acceleration is given by the formula \alpha_{t} = r \alpha

Where r =  radius of the disk

\alpha = angular acceleration

⇒ \alpha_{t} = 0.8 × 50

⇒ \alpha_{t} = 40 \frac{m}{s^{2} }

This is the value of tangential acceleration.

Radial acceleration is given by

\alpha_{r} = \frac{V^{2} }{r}

Where V = velocity of the disk = r \omega

⇒ V = 0.8 × 10

⇒ V = 8 \frac{m}{s}

Radial acceleration

\alpha_{r} = \frac{8^{2} }{0.8}

\alpha_{r} = 80 \frac{m}{s^{2} }

This is the value of radial acceleration.

7 0
3 years ago
Which conditions must be met in order for work to be done?​
Anettt [7]

Answer:

u wanna do my edge bro the answer is b

Explanation:

3 0
2 years ago
Kevin jumps straight up in the air to a height of 1 meter.At the top of his jump, he has potential energy of 1,000 joules.Answer
Llana [10]
Gravitational potential energy can be given by the equation
PE = mgh
where m is the mass,
g is the gravitational constant 9.81 or 10 depending on rounding
and h is the height

well weight is a force equiavlent to
W= m*g

so comparing that to the potential energy equation, divide the potential energy by the height and you will get weight in Newtons


3 0
2 years ago
Imagine a 10kg block moving with a speed of 20m/s. calculate the kinetic energy of this block
avanturin [10]
E_{c}=\frac{mv^2}{2}=2000J
7 0
2 years ago
) Un círculo de 120 cm de radio gira a 600 rpm. Calcula: a) su velocidad angular
DIA [1.3K]

Responder:

20πrads ^ -1; 24πrads ^ -1; 0,1 seg; 10 Hz

Explicación:

Dado lo siguiente:

Radio (r) del círculo = 120 cm

600 revoluciones por minuto en radianes por segundo

(600 / min) * (2π rad / 1 rev) * (1min / 60seg)

(1200πrad / 60sec) = 20π rad ^ -1

Velocidad angular (w) = 20πrads ^ -1

Velocidad lineal = radio (r) * velocidad angular (w)

Velocidad lineal = (120/100) * 20πrad

Velocidad lineal = 1.2 * 20πrads ^ -1 = 24πrads ^ -1

C.) Período (T):

T = 2π / w = 2π / 20π = 0.1 seg

D.) Frecuencia (f):

f = 1 / T = 1 / 0.1

1 / 0,1 = 10 Hz

5 0
2 years ago
Other questions:
  • The amount of friction divided by the weight of an object forms a unit less number called the blank of friction
    15·1 answer
  • What is the theory of punctuated equilibrium answers?
    15·2 answers
  • The driver of a 1,000 kg car travelling at a speed of 16.7 m/s applies the car's brakes when he sees a red light. the car's brak
    13·2 answers
  • The purpose of antilock brake systems is to prevent the brakes from becoming locked.Choose one True False
    9·1 answer
  • Student bikes to school by traveling first dN = 1.10 miles north, then dW = 0.300 miles west, and finally dS = 0.200 miles south
    15·1 answer
  • Can you answer this question please.
    14·1 answer
  • HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PLEASE
    5·1 answer
  • Which has greater mass of a bowling ball at rest for a rolling basketball which has greater momentum
    5·1 answer
  • A police car is moving to the left at 34m/sec while its siren is emitting a 600Hz tone. What tone would you hear if you were par
    13·1 answer
  • We see the Sun before it comes above the horizon. Explain.​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!