Answer:
14.2 m/s
Explanation:
Given data:
Speed of the stream, v₁ = 7.1 m/s
let the cross section area at initial point be A₁
now area at the second point, A₂ = (1/2)A₁ = 0.5A₁
now, from the continuity equation, we have
A₁v₁ = A₂v₂
where, v₂ is the velocity at the narrowed portion
thus, on substituting the values, we get
A₁ × 7.1 = 0.5A₁ × v₂
or
v₂ = 14.2 m/s
Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

Answer:
Due to lower risk of injury or damage.
Explanation:
The high divers would choose to enter the water from the feet first because there is low risk of injury. The brain is the most important part of the body which very sensitive to any small injury. Small injury to brain leads to big problems in life. High divers can reach speeds of nearly 60 mph and enters about 28m into the water in about three seconds which can damage the head region if comes in contact with the ground so this is the reason the high divers avoid of entering in the water through their heads and choose entering through their feet.