Answer:
16.4 °C
Explanation:
Boiling point elevation is the phenomenon in which the boiling point of a solvent will increase when another compound is added to it; meaning that athe resultant solution has a higher boiling point than its pure solvent.
Using the ebullioscopic constant,
ΔT = m * i * Kb
Where,
Δ T is the temperature difference between the boiling point of the solution, Temp.f and boiling point of the pure solvent, Temp.i
Kb is the ebulliscope factor of water = 0.510 °C.kg/mol
i is the van hoffs number = 1
m is the molality in mol/kg.
Calculating the molality of the solution,
Temp.i = 100°C
Temp.f = 104.5 °C
= 4.5/(1*0.510)
= 8.8235 mol/kg
Freezing point depression is defined as the decrease in the freezing point of a solvent on the addition of a solute.
Using the same equation, but kf = 1.86 °C.kg/mol
ΔT = m * i * Kf
Temp.i = freezing point of water = 0°C
Temp.f = (8.8235*1.86) - 0
= 16.412 °C
Freezing point of the solution = 16.4 °C
Answer:The surface heated air expands as it warms, becomes less dense than surrounding cooler air and rises as buoyant and turbulent bubbles. This is convection and is the main process by which the troposphere mixes and heats. Although convection stirs and mixes the troposphere, the higher it is the colder it becomes.
Explanation: Read this and you'll get your answer~! I hope i helped you~! Have an GREAT day too~! <\3
Answer:
D. chlorine, oxygen, nitrogen, hydrogen.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
<em>ν ∝ 1/√M</em>
where ν is the rate of effusion and M is the atomic or molecular mass of the gas particles.
- The molecular mass for the listed gases are:
O₂: 32.0 g/mol,
Cl₂: 70.906 g/mol,
N₂: 28.0 g/mol,
H₂: 2.0 g/mol.
- Hence, the smallest molecular mass of the gas, the fastest rate of effusion.
So, the order from the slowest to the fastest rate of effusion is:
<em>Chlorine, oxygen, nitrogen, hydrogen.</em>
Answer:
Wet ashing is primarily used in the preparation of samples for subsequent analysis of specific minerals . It breaks down and removes the organic matrix surrounding the minerals so that they are left in an aqueous solution
Explanation:
Answer:
One that “Can be answered by conducting an experiment”
Explanation: