Answer: 24.13 g Cu
Explanation:
<u>Given for this question:</u>
M of CuO = 30 g
m of CuO = 79.5 g/mol
Number of moles of CuO = (given mass ÷ molar mass) = (30 ÷ 79.5) mol
= 0.38 mol
The max number of CuO (s) that can be produced by the reaction of excess methane can be solved with this reaction:
CuO(s) + CH4(l) ------> H2O(l) + Cu(s) + CO2(g)
The balanced equation can be obtained by placing coefficients as needed and making sure the number of atoms of each element on the reactant side is equal to the number of atoms of each element on the product side
4CuO(s) + CH4(l) ----> 2H2O(l) + 4Cu(s) + CO2(g)
From the stoichiometry of the balanced equation:
4 moles of CuO gives 4 moles of Cu
1 mole of CuO gives 1 mol of Cu
0.38 mol of CuO gives 0.38 mol of Cu
Therefore, the grams of Cu that can be produced = 0.38 × molar mass of Cu
= 0.38 × 63.5 g
= 24.13 grams
Therefore, 24.13 grams of copper could be produced by the reaction of 30.0 of copper oxide with excess methane
Answer:
the correct answer is CO2 (the last one)
Answer:
for the reaction is 3.45
Explanation:
The balanced chemical reaction is:
At eqm. 0.562 atm 0.101 atm 0.332 atm
As we are given that:
The expression of
for above equation follows:

Putting values in above equation, we get:

The value of
for the reaction is 3.45
Answer:
9000 BC
Explanation:
Although various copper tools and decorative items dating back as early as 9000 BCE have been discovered, archaeological evidence suggests that it was the early Mesopotamians who, around 5000 to 6000 years ago, were the first to fully harness the ability to extract and work with copper.
When lights hits an object, the light either get absorbed, reflected or refracted