<h2>
Explanation:</h2><h3 /><h3>Oxygen- gains 2 electrons to form ions</h3><h3>Fluorine- gains 1 electron to form negative ions</h3><h3>Aluminum - loses three electrons to form ions</h3><h3>Calcium- loses 2 electrons in order to form ions</h3>
<h3>*Non metals gain electrons to form ions</h3><h3>*Metals loses electrons to form ions</h3>
<span>oxygen is a mixture and a rock is a pure substance.</span>
As with most stoichiometry problems, it is necessary to work in moles. The ratio of the moles of each element will provide the ratio of the atoms of each element.
Get the mass of each element by assuming a certain overall mass for the sample (100 g is a good mass to assume when working with percentages).
Remeber that percentages are a ratio multiplied by 100. You must convert percentages back to their decimal value before working with them.
(.4838) (100 g) = 48.38 g C
(.0812 ) (100 g) = 8.12 g H
(.5350) (100 g) = 53.38 g O
Convert the mass of each element to moles of each element using the atomic masses.
(48.38 g C) (1 mol/ 12.10 g C) = 4.028 mol C
(8.12 g H) (1 mol/ 1.008 g H) = 8.056 mol H
(53.38 g O) (1 mol/ 16.00 g O) = 3.336 mol O
Find the ratio or the moles of each element by dividing the number of moles of each by the smallest number of moles.
Use the mole ratio to write the empirical formula.
Since the iron is pure, we can look up its density value online and will always be true. This density value of iron is 7.87g/L. Now, we can use the density formula (D = m/V) and rearrange it to solve for V. This new equation is then V = m/D. Next, we plug in our known values and solve for V (5.00g/7.87g/L). This gives us our final answer of 0.635L (three sig figs due to the three sig figs in the provided mass).
Hope this helps!