You are asked to give the answer in <span>g/cm3. So without knowing any single formulae you can just divide grams by cm3.
</span>

= 4.5 g/cm3
This is weird.
All three 'choices' are true.
Line um up. (a) shows how to solve the problem. (b) does it. and (c) is the answer.
Answer:
We can use 2 g H = v2^2 - v1^2 or
v2^2 = 2 g H + v1^2
Since 88 ft/sec = 60mph we have 30 mph = 44 ft/sec
The object will return with the same speed that it had initially so the object
starts out with a downward speed of 44 ft/sec
Then v2^2 = 2 * 32 ft/sec^2 * 160 ft + 44 (ft/sec)^2
v2^2 = (2 * 32 * 160 + 44^2) ft^2 / sec^2 = 12180 ft^2/sec^2
v2 = 110 ft/sec
Answer:
push up agaisnt you with equal force.
The car's mass is 1600 kg.
Its weight is (mass) x (gravity).
On Earth, that's (1600 kg) x (9.8 m/s²) = 15,680 Newtons.
At the moment, that's the only force acting on the car, directed downward and provided by gravity.
If you want to lift the car, then the net force has to be directed upward, and must either exactly cancel or exceed the force of gravity.
So the minimum force required to lift the car is <em>15,680 Newtons</em>, directed vertically upward.