Answer:
I'm pretty sure that's right.
Explanation:
Answer : The reaction is endothermic.
Explanation :
Formula used :

where,
= change in temperature = 
Q = heat involved in the dissolution of KCl = ?
m = mass = 0.500 + 50.0 = 50.5 g
c = specific heat of resulting solution = 
Now put all the given value in the above formula, we get:


The heat involved in the dissolution of KCl is positive that means as the change in temperature decreases then the reaction is endothermic and as the change in temperature increases then the reaction is exothermic.
Hence, the reaction is endothermic.
Answer:
I would expect the gas rate determined in this manner to be too low
Explanation:
A Rotameter can be designed to respond to the sensitivity of density, velocity, to measure the flow rate of liquid or gas enclosed in a tube. Liquids are denser than gas, and since the gas rate to be determined needed to respond to the velocity head alone of the rotameter so as to bring the forces in the tube equilibrium. Knowing if there is no flow, then the float would remain at the bottom, so gas has to flow at a higher rate compared to the liquid so the float would be in a similar position making it easier to measure the flowrate. This leaves the gas rate to be determined too low.
Answer:
8.99×10^-7m
Explanation:
The wavelength can be calculated using the expression below
E=hcλ
Where E= energy= 2.21 x 10^-19 J.
C= speed of light= 3x10^8 m/s
h= planks constant= 6.626 × 10^-34 m2 kg / s
E=hcλ
λ= E/(hc)
Substitute for the values
λ=( 2.21 x 10^-19 )/(6.626 × 10^-34 × 3x10^8 )
= 8.99×10^-7m
The oxidation numbers for Nitrogen are respectively -3, +5, +4