Answer:
Due to an electron-pair acceptor and donor.
Explanations:
<em><u>Lewis acid</u></em> can be defined as an electron-pair acceptor. An example is Hydrogen ion(H+). This is because it is a proton and it distributes positive charge which means that it accepts electrons(negative charge).
<em><u>Lewis base</u></em> can be defined as an electron-pair donor. This is because it donates electrons to be accepted by the proton. An example is ammonia(NH3).
Answer:
carbon dioxide and water
Explanation:
Example: Combustion of Methane (CH₄(g))
CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(g)**
____________________
Note: The combustion of any hydrocarbon produces CO₂ & H₂O. That is,
Ethane (C₂H₆) + O₂ => CO₂(g) + H₂O(g)
Propane (C₃H₈) + O₂ => CO₂(g) + H₂O(g)
Butane (C₄H₁₀) + O₂ => CO₂(g) + H₂O(g)
The issue remaining is to balance the reaction equation. For these type equation balance Carbon 1st, then Hydrogen and finish with Oxygen. Balancing in this order leaves Oxygen which can be balanced using fractions. If problem requires lowest whole number ratios of elements, simply multiply entire equation by 2 to get standard equation*
______________________
*Standard Equation is defined as the smallest whole number ratios of elements. The 'standard equation' is significant in that it is assumed to be at STP conditions; i.e., 0⁰C (=273K) & 1.0 Atmosphere pressure.
- Ethane (C₂H₆) + 7/2O₂(g) => 2CO₂(g) + 3H₂O(g)
=> 2C₂H₆ + 7O₂(g) => 4CO₂(g) + 6H₂O(g) <= Standard Form of Rxn
- Propane (C₃H₈) + 5O₂(g) => 3CO₂(g) + 4H₂O(g) <= Standard Form of Rxn (no need to balance with the '2' multiple)
- Butane (C₄H₁₀) + 13/2O₂ => 4CO₂(g) + 5H₂O(g)
=> 2C₃H₈ + 13O₂(g) => 4CO₂(g) + 5H₂O(g) <= Standard Form of Rxn
______________________
**Also, note that water, H₂O(g), is listed as a gas. In some cases it will be listed as a liquid, H₂O(l).
Well the solvent is the liquid in a solution so your answer would be Solute, D. That is the one that would represent the sugar crystals being evenly mixed into a solution.