Answer:
a

b
The value is 
Explanation:
From the question we are told that
The mass is
The spring constant is 
The instantaneous speed is 
The position consider is x = 0.750A meters from equilibrium point
Generally from the law of energy conservation we have that
The kinetic energy induced by the hammer = The energy stored in the spring
So

Here a is the amplitude of the subsequent oscillations
=> 
=> 
=> 
Generally from the law of energy conservation we have that
The kinetic energy by the hammer = The energy stored in the spring at the point considered + The kinetic energy at the considered point

=> 
=> 
Yes yes multiply hurry up
When Jane is sliding down a slide, she is demonstrating translational motion.
Answer:
The wave speed is calculated below:
Explanation:
Given,
number of waves passed per minute = 8
time period = 1 minute = 60 s
distance between successive wave crests = 20 m
waves passing interval per second =

Now,
wave speed = 20 m ×

=
m/s
= 2.67 m/s
Hence the wave speed is 2.67 m/s.
Answer:
3540.5N
Explanation:
Step one:
given data
mass m= 0.196kg
speed v= 31m/s
distance r= 5.32cm = 0.0532m
Step two
The expression relating force, mass, velocity and distance is
F= mv^2/r
substitute we have
F=0.196*31^2/0.0532
F=0.196*961/0.0532
F=188.356/0.0532
F=3540.5N