F = G mM / r^2, where
<span>F = gravitational force between the earth and the moon, </span>
<span>G = Universal gravitational constant = 6.67 x 10^(-11) Nm^2/(kg)^2, </span>
<span>m = mass of the moon = 7.36 × 10^(22) kg </span>
<span>M = mass of the earth = 5.9742 × 10^(24) and </span>
<span>r = distance between the earth and the moon = 384,402 km </span>
<span>F </span>
<span>= 6.67 x 10^(-11) * (7.36 × 10^(22) * 5.9742 × 10^(24) / (384,402 )^2 </span>
<span>= 1.985 x 10^(26) N</span>
Answer:
F = 800 [N]
Explanation:
To be able to calculate this problem we must use the principle of momentum before and after the impact of the hammer.
We must summarize that after the impact the hammer does not move, therefore its speed is zero. In this way, we can propose the following equation.
ΣPbefore = ΣPafter

where:
m₁ = mass of the hammer = 0.15 [m/s]
v₁ = velocity of the hammer = 8 [m/s]
F = force [N] (units of Newtons)
t = time = 0.0015 [s]
v₂ = velocity of the hammer after the impact = 0
![(0.15*8)-(F*0.0015) = (0.15*0)\\F*0.0015 = 0.15*8\\F = 1.2/(0.0015)\\F = 800 [N]](https://tex.z-dn.net/?f=%280.15%2A8%29-%28F%2A0.0015%29%20%3D%20%280.15%2A0%29%5C%5CF%2A0.0015%20%3D%200.15%2A8%5C%5CF%20%3D%201.2%2F%280.0015%29%5C%5CF%20%3D%20800%20%5BN%5D)
Note: The force is taken as negative since it is exerted by the nail on the hammer and this force is directed in the opposite direction to the movement of the hammer.
Answer:
y₀ = 10.625 m
Explanation:
For this exercise we will use the kinematic relations, where the upward direction is positive.
y = y₀ + v₀ t - ½ g t²
in the exercise they indicate the initial velocity v₀ = 8 m / s.
when the rock reaches the ground its height is zero
0 = y₀ + v₀ t - ½ g t²
y₀i = -v₀ t + ½ g t²
let's calculate
y₀ = - 8 2.5 + ½ 9.8 2.5²
y₀ = 10.625 m
Kepler's 3rd law is given as
P² = kA³
where
P = period, days
A = semimajor axis, AU
k = constant
Given:
P = 687 days
A = 1.52 AU
Therefore
k = P²/A³ = 687²/1.52³ = 1.3439 x 10⁵ days²/AU³
Answer: 1.3439 x 10⁵ (days²/AU³)
Potential energy is energy stored in an object. kinetic energy is energy of motion