1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
3 years ago
12

Question 30

Physics
1 answer:
stellarik [79]3 years ago
3 0

Answer: 0.69\°

Explanation:

The angular diameter \delta of a spherical object is given by the following formula:

\delta=2 sin^{-1}(\frac{d}{2D})

Where:

d=16 m is the actual diameter

D=1338 m is the distance to the spherical object

Hence:

\delta=2 sin^{-1}(\frac{16 m}{2(1338 m)})

\delta=0.685\° \approx 0.69\° This is the angular diameter

You might be interested in
A solid sphere of radius R is made of a metallic conductor. A hollow spherical shell of the same radius R is made of the same co
Harrizon [31]

1-2) They have same surface charge density

3-4) The metallic conductor has greatest surface charge density

Explanation:

1-2)

In a conductor, the charge carriers (mainly electrons) are free to move. Therefore, as a result, they tend to move at the largest possible distance from each other, because of the repulsive force that they exert on each other.

The configuration that maximize the distance between the charge carriers for a solid sphere of metallic conductor is the one in which all the electrons are on the surface, and they are equally spaced between each other. This means that for the solid sphere of radius R, the excess charge Q will be entirely spread over the surface of the sphere.

Similarly, the excess charge Q on the hollow spherical shell (which is also made of the same conducting material) will also be spread over the surface with the charge carriers at the maximum distance from each other. Therefore, the surface charge density for both objects will be

\sigma = \frac{Q}{4\pi R^2}

where R is the radius of the two spheres.

3-4)

In this case, the surface charge density on the two objects is different.

In fact, on the metallic sphere (conducting) the surface charge density is (as explained in part 1):

\sigma = \frac{Q}{4\pi R^2}

Hoever, the second sphere is made of an insulating material. In an insulator, the charge carriers are not free to move. If the initial charge Q is spread across the all sphere (which is not hollow), this means that some of the charge will actually also be inside the sphere. So the charge deposited on the surface, Q', will be less than the total charge Q. Therefore, the surface charge density will be

\sigma' = \frac{Q'}{4\pi R^2}

And since Q' < Q, this means that \sigma', so the conducting sphere has a greatest surface charge  density.

4 0
3 years ago
The table shows the potential energy and kinetic energy of a skier at two different positions on a hill.
Serggg [28]

Answer:

30,000 units, because total energy remains unchanged

6 0
3 years ago
Read 2 more answers
A cylindrically shaped piece of collagen (a substance found in the body in connective tissue) is being stretched by a force that
Marat540 [252]

Answer:

Part(a): The value of the spring constant is 3.11 \times 10^{2}~Kg~s^{-2}.

Part(b): The work done by the variable force that stretches the collagen is 1.5 \times 10^{-6}~J.

Explanation:

Part(a):

If 'k' be the force constant and if due the application of a force 'F' on the collagen '\Delta l' be it's increase in length, then from Hook's law

F = k~\Delta l....................................................................(I)

Also, Young's modulus of a material is given by

Y = \dfrac{F/A}{\Delta l/l}...............................................................(II)

where 'A' is the area of the material and 'l' is the length.

Comparing equation (I) and (II) we can write

&& Y = \dfrac{l~k}{A}\\&or,& k = \dfrac{Y~A}{l}\\&or,& k = \dfrac{Y~(\pi~r^{2})}{l}

Here, we have to consider only the circular surface of the collagen as force is applied only perpendicular to this surface.

Substituting the given values in equation (III), we have

k = \dfrac{3.10 \times 10^{6}~N~m^{-2} \times \pi \times (0.00093)^{2}~m^{2}}{.027~m} = 3.11 \times 10^{2}~Kg~s^{-2}

Part(b):

We know the amount of work done (W) on the collagen is stored as a potential energy (U) within it. Now, the amount of work done by the variable force that stretches the collagen can be written as

W = \dfrac{1}{2}k~x^{2} = \dfrac{(\dfrac{F}{k})^{2}k}{2} = \dfrac{F^{2}}{2~k}...................................(IV)

Substituting all the values, we can write

W = \dfrac{(3.06 \times 10^{-2})^{2}~N^{2}}{2 \times 3.11 \times 10^{2}~Kg~s^{-2}} = 1.5 \times 10^{-6}~J

3 0
3 years ago
Calculate the difference in blood pressure between the feet and top of the head for a person who is 1.70 m tall.
cupoosta [38]

Answer:

P_2 - P_1 = 1.8 * 10^4\ Pa

Explanation:

Given

Height (h) = 1.70m

Required

Determine the difference in the blood pressure from feet to top

This is calculated using Pascal's second law.

The second law is represented as:

P_2 = P_1 + pgd

Subtract P1 from both sides

P_2 - P_1 = pgd

Where

p = blood\ density = 1.06 * 10^3kg/m^3

g = acceleration\ of\ gravity = 9.8N/kg

d =height = 1.70m

P2 - P1 = Blood Pressure Difference

So, the expression becomes:

P_2 - P_1 = 1.06 * 10^3 * 9.8 * 1.70

P_2 - P_1 = 17659.6Pa

P_2 - P_1 = 1.8 * 10^4\ Pa

Hence, the difference in blood pressure is approximately 1.8 * 10^4\ Pa

3 0
3 years ago
What are the five basic postulates of kinetic-molecular theory?
lesantik [10]

Explanation:

The five basic postulate of kinetic molecular theory includes:

1) All gases consist of large amount and numbers of tiny particles that are far apart from each other and also relative to their size.

2) The collisions between gas particles and gas particles against container walls is refer to as  elastic collision.

3) All gas particles are in a continuous random and rapid motion. They possess kinetic energy which is energy of motion.

4) There are no attractive force between gas particles.

5) The temperature of a gas depends on the average kinetic energy of the gas particle.

8 0
3 years ago
Other questions:
  • The nucleus of an atom consists of protons and neutrons (no electrons). A nucleus of a carbon‑12 isotope contains six protons an
    10·1 answer
  • A system of mass 13 kg undergoes a process during which there is no work, the elevation decreases by 50 m, and the velocity incr
    12·1 answer
  • How does the vibration of a drumhead cause a sound wave to form?
    14·2 answers
  • A tank with a constant volume of 3.72 m3 contains 22.1 moles of a monatomic ideal gas. The gas is initially at a temperature of
    5·1 answer
  • Distinguish between constructive and destructive interference. Please use 3 content related sentences.
    15·1 answer
  • A large positively charged object with charge q + = 3.25 μC q+=3.25 μC is brought near a negatively charged plastic ball suspend
    12·1 answer
  • ⦁ Which species do you think is best adapted to a diet of small, delicate seeds? Explain why you think so.
    8·1 answer
  • Ideal mechanical advantage is equal to the displacement of the effort force divided by the displacement of the load.
    5·1 answer
  • Please help I’m so confused
    9·1 answer
  • 1. Which statement best describes the motion of the scooter? *
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!