1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
6

A large semi-truck is moving a house from one lot to another. The amount of force required to move the house 15.A horizontally a

distance of 72 meters is 3.500 pewtens How much work will be done ce the house?
Physics
1 answer:
dlinn [17]3 years ago
5 0

Answer:

252J

Explanation:

Given parameters:

Distance  = 72m

Force  = 3.5N

Unknown:

Work done on the house  = ?

Solution:

Work done is the force applied to move a body through a particular distance.

    Work done  = Force x distance

Now insert the parameters and solve;

   Work done  = 3.5 x 72  = 252J

You might be interested in
Can I get the answer
ANEK [815]
Hey there
how are u..................................................
4 0
3 years ago
Acceleration is measured in_________<br><br><br> m<br><br><br> g<br><br><br> m/s<br><br><br> m/s2
Nana76 [90]
Acceleration is measured in m/s².

Answer: m/s²
4 0
3 years ago
WILL MARK AS BRAINLIEST
kumpel [21]
The answer is either C or D.
8 0
3 years ago
Based on the chemical equation, use the drop-down menu to choose the coefficients that will balance the chemical
MaRussiya [10]

The coefficients in order are 2, 1, 1

<h3>What is balanced chemical equation?</h3>

A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge is the same for both the reactants and the products.

In other words, the mass and the charge are balanced on both sides of the reaction.

According to the given situation,

To balance the the chemical equation,

Step 1 - Add a 2 on the Na2HPO4:

2(Na₂HPO₄)  ⇒ Na4P₂O₇ + H₂O

Step 2 -Next take count of each element on both sides to see if the 2 is balanced or not:

On the left there are 4 Na, 2 H, 2 P, and 8 O

On the right there are 4 Na, 2 H, 2 P, and 8 O

Step 3 - Now we will divide by 2

i.e. 2 NA.H. P

The coefficient of  Na is 2 , Coefficient of H is 1 and Coefficient of P is 1

Therefore,

The coefficients in order are 2, 1, 1.

Learn more about balanced chemical equation here:

brainly.com/question/15052184

#SPJ1

8 0
2 years ago
A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fai
patriot [66]

Answer:

a) The speed of the car when it reaches the edge of the cliff is 19.4 m/s

b) The time it takes the car to reach the edge is 4.79 s

c) The velocity of the car when it lands in the ocean is 31.0 m/s at 60.2º below the horizontal

d) The total time interval the car is in motion is 6.34 s

e) The car lands 24 m from the base of the cliff.

Explanation:

Please, see the figure for a description of the situation.

a) The equation for the position of an accelerated object moving in a straight line is as follows:

x =x0 + v0 * t + 1/2 a * t²

where:

x = position of the car at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the car starts from rest and the origin of the reference system is located where the car starts moving, v0 and x0 = 0. Then, the position of the car will be:

x = 1/2 a * t²

With the data we have, we can calculate the time it takes the car to reach the edge and with that time we can calculate the velocity at that point.

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

<u>t = 4.79 s </u>

The equation for velocity is as follows:

v = v0  + a* t

Where:

v = velocity

v0 =  initial velocity

a = acceleration

t = time

For the car, the velocity will be

v = a * t

at the edge, the velocity will be:

v = 4.05 m/s² * 4.79 s = <u>19.4 m/s</u>

b) The time interval was calculated above, using the equation of  the position:

x = 1/2 a * t²

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

t = 4.79 s

c) When the car falls, the position and velocity of the car are given by the following vectors:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v =(v0x, v0y + g * t)

Where:

r = position vector

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity

v = velocity vector

First, let´s calculate the initial vertical and horizontal velocities (v0x and v0y). For this part of the problem let´s place the center of the reference system where the car starts falling.

Seeing the figure, notice that the vectors v0x and v0y form a right triangle with the vector v0. Then, using trigonometry, we can calculate the magnitude of each velocity:

cos -37.0º = v0x / v0

(the angle is negative because it was measured clockwise and is below the horizontal)

(Note that now v0 is the velocity the car has when it reaches the edge. it was calculated in a) and is 19,4 m/s)

v0x = v0 * cos -37.0 = 19.4 m/s * cos -37.0º = 15.5 m/s

sin 37.0º = v0y/v0

v0y = v0 * sin -37.0 = 19.4 m/s * sin -37.0 = - 11. 7 m/s

Now that we have v0y, we can calculate the time it takes the car to land in the ocean, using the y-component of the vector "r final" (see figure):

y = y0 + v0y * t + 1/2 * g * t²

Notice in the figure that the y-component of the vector "r final" is -30 m, then:

-30 m = y0 + v0y * t + 1/2 * g * t²

According to our reference system, y0 = 0:

-30 m = v0y * t + 1/2 g * t²

-30 m = -11.7 m/s * t - 1/2 * 9.8 m/s² * t²

0 = 30 m - 11.7 m/s * t - 4.9 m/s² * t²

Solving this quadratic equation:

<u>t = 1.55 s</u> ( the other value was discarded because it was negative).

Now that we have the time, we can calculate the value of the y-component of the velocity vector when the car lands:

vy = v0y + g * t

vy = - 11. 7 m/s - 9.8 m/s² * 1.55s = -26.9 m/s

The x-component of the velocity vector is constant, then, vx = v0x = 15.5 m/s (calculated above).

The velocity vector when the car lands is:

v = (15.5 m/s, -26.9 m/s)

We have to express it in magnitude and direction, so let´s find the magnitude:

|v| = \sqrt{(15.5 m/s)^{2} + (-26.9 m/s)^{2}} = 31.0m/s

To find the direction, let´s use trigonometry again:

sin α = vy / v

sin α = 26.9 m/s / 31.0 m/s

α = 60.2º

(notice that the angle is measured below the horizontal, then it has to be negative).

Then, the vector velocity expressed in terms of its magnitude and direction is:

vy = v * sin -60.2º

vx = v * cos -60.2º

v = (31.0 m/s cos -60.2º, 31.0 m/s sin -60.2º)

<u>The velocity is 31.0 m/s at 60.2º below the horizontal</u>

d) The total time the car is in motion is the sum of the falling and rolling time. This times where calculated above.

total time = falling time + rolling time

total time = 1,55 s + 4.79 s = <u>6.34 s</u>

e) Using the equation for the position vector, we have to find "r final 1" (see figure):

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

Notice that the y-component is 0 ( figure)

we have already calculated the falling time and the v0x. The initial position x0 is 0. Then.

r final 1 = ( v0x * t, 0)

r final 1 = (15.5 m/s * 1.55 s, 0)

r final 1 = (24.0 m, 0)

<u>The car lands 24 m from the base of the cliff.</u>

PHEW!, it was a very complete problem :)

5 0
3 years ago
Other questions:
  • The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that
    10·1 answer
  • Earthquakes with a very deep focus are usually located along ________.
    13·2 answers
  • Which field(s) are created by an electron when it moves?
    7·2 answers
  • 12–139. Cars move around the “traffic circle” which is in the shape of an ellipse. If the speed limit is posted at 60 km&gt;h, d
    11·1 answer
  • A ball is thrown with a velocity of 40 m/s at an angle of 30° above the horizontal and attains a certain range R. At what other
    14·1 answer
  • The electric force between electric charges is much larger than the gravitational force between the charges. Why, then, is the g
    14·1 answer
  • Which way does the direction arrow always points
    15·1 answer
  • How many layers of the Earth are there, and what are these layer's names in order from centermost, to outermost, Brainliest for
    5·1 answer
  • 9) Suppose it takes a plane 5 hours to travel from Philadelphia to San Francisco. It
    9·1 answer
  • Select all the correct answers.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!