The acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
The given parameters;
- mass of the car, m = 1400 kg
- Initial velocity of the car, u = 25 m/s
- coefficient of kinetic friction, μ = 0.7
The acceleration of the car is calculated as follows;
a = μg
a = 0.7 x 9.8
a = 6.86 m/s²
The time taken for the car to stop is calculated by using Newton's second law of motion;
F = ma

Thus, the acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
Learn more here:brainly.com/question/19887955
It was D. Miguel Hidalgo but i could be wrong..
Answer:
<u><em>3 hours</em></u>
Explanation:
If the car takes 2 hours to go 40 miles, then the car can go 20 miles in 1 hour. Since the car is going 60 miles, it will take 3 hours.
Hope that makes sense :)
Answer:
The answer is a=b=c=3.833 cm
Explanation:
Lets call the variables a=side a b=side b c=side c
We have that the formula of the equilateral triangle for its height is:
1)h=(1/2)*root(3)*a
2) If we resolve the equation we have
2.1)2h=root(3)*a
2.2)(2h/root(3))=a
3) After the replacement of each value we have that
a=2*3.32/1.73205
a=3.833 cm
And we know that the equilateral triangle has the same value for each side so a=b=c=3.833 cm