Answer:3W
If it takes an amount of work W to move two q point charges from infinity to a distance d apart from each other, then how much work should it take to move three q point charges from infinity to a distance d apart from each other?
A) 2W
B) 3W
C) 4W
D) 6W
Explanation: calculating work done,W, in moving two positive q point charges from infinity to a valued distance d from each other is
W = k(+q)(+q)/ d
k is couloumb's constant
work done in moving 3 equal positive charges from infinity to a finite distance is given by
W₂=W₄=W₆=k(+q)(+q)/ d
Total work done, W' =k(+q)(+q)/ d + k(+q)(+q)/ d + k(+q)(+q)/ d
= W + W + W = 3W
Answer:
24mph
Explanation:
it really depends how high but the average speed for that quick will be atleast 24mph if not try 42mph if it is wrong
The last one.
One grey sphere, Four white spheres, and One red spheres
Answer:
1)
is<u> positive.</u>
<u></u>
2) 
Explanation:
<h2><u>
Part 1:</u></h2>
<u></u>
The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.
Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e.,
is <u>positive.</u>
<u></u>
<h2><u>
Part 2:</u></h2>
<u></u>
<u>Given:</u>
- Mass of the balloon, m = 0.00275 kg.
- Charge on the balloon,

- Distance between the rod and the balloon, d = 0.0640 m.
- Acceleration due to gravity,

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.
Weight of the balloon, 
The magnitude of the electrostatic force on the balloon due to the rod is given by

is the Coulomb's constant.
For the elecric force and the weight to be balanced,

Troposphere, stratosphere, mesosphere, thermosphere, exosphere