Air is a poor conductor of heat. The air trapped between the two panes is a pretty good <em>insulator</em>. It does a lot to prevent heat from flowing through the windows ... keeping heat IN during the Winter, and OUT during the Summer.
As the greater force of tension (by 81N) is exerted by the team on the right the rope will move to the right.
Answer:
0.04
Explanation:
Fraction of power converted to sound = 80% = 0.08
Fraction incident upon each eardrum onstage = 0.08/2 = 0.04
Answer:
P = 2439.5 W = 2.439 KW
Explanation:
First, we will find the mass of the water:
Mass = (Density)(Volume)
Mass = m = (1 kg/L)(10 L)
m = 10 kg
Now, we will find the energy required to heat the water between given temperature limits:
E = mCΔT
where,
E = energy = ?
C = specific heat capacity of water = 4182 J/kg.°C
ΔT = change in temperature = 95°C - 25°C = 70°C
Therefore,
E = (10 kg)(4182 J/kg.°C)(70°C)
E = 2.927 x 10⁶ J
Now, the power required will be:

where,
t = time = (20 min)(60 s/1 min) = 1200 s
Therefore,

<u>P = 2439.5 W = 2.439 KW</u>
A transverse wave and a longitudinal wave.
Transverse:wave particles move at medium speed in perpendicular to the direction that the waves move
Longitudinal:wave particles move at medium speed in parallel to the direction that the wave moves
Hope this helps ^-^