Q1. The answer is 8.788 m/s
V2 = V1 + at
V1 - the initial velocity
V2 - the final velocity
a - the acceleration
t - the time
We have:
V1 = 4.7 m/s
a = 0.73 m/s²
t = 5.6 s
V2 = ?
V2 = 4.7 + 0.73 * 5.6
V2 = 4.7 + 4.088
V2 = 8.788 m/s
Q2. The answer is 9.22 s
V2 = V1 + at
V1 - the initial velocity
V2 - the final velocity
a - the acceleration
t - the time
We have:
V2 = 0 (because it reaches a complete stop)
V1 = 4.7 m/s
a = -0.51 m/s²
t = ?
0 = 4.7 + (-0.51)*t
0 = 4.7 - 0.51t
0.51t = 4.7
t = 4.7 / 0.51
t = 9.22 s
B. Is faster in solids than liquids would be the correct answer because the molecules in solids are much closer and can pass along energy faster and more effectively.
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.