Answer:
ΔU° = 56.0 J
Explanation:
Step 1: Given data
- Work done to compress the gas (w): 83.0 J (When work is done on the gas, w is positive).
- Heat given off to the surroundings (q): -27.0 J (When heat is released to the surroundings, q is negative)
Step 2: Calculate the change in the internal energy of the gas (ΔU°)
The internal energy of a gas is the energy contained within it. We can calculate it using the following expression.
ΔU° = q + w
ΔU° = -27.0 J + 83.0 J
ΔU° = 56.0 J
Answer:
Neutralization reactions
Explanation:
A neutralization reaction is a reaction between an acid and a base. Products of this type of reaction is water and a salt. The pH of the salt product would depend on how strong or weak the base and acid would be when they react with each other. Although the characteristics of bases and acids are practically polar opposites, when combined, they cancel each other our producing a neutralized product.
Answer:

Explanation:
Hello!
In this case, according to the following chemical reaction:

It means that we need to compute the moles of hydrogen and oxygen that are reacting, via the ideal gas equation as we know the volume, pressure and temperature:

Thus, the yielded moles of water are computed by firstly identifying the limiting reactant:

Thus, the fewest moles of water are 0.0609 mol so the limiting reactant is oxygen; in such a way, by using the ideal gas equation once again, we compute the pressure of water:

Best regards!
<span>Among the given choices, the third option is the only one which illustrates single replacement.
(3)H2SO4 + Mg --> H2 + MgSO4
A single replacement is also termed as single-displacement reaction, a reaction by which an element in a compound, displaces another element.
It can be illustrated this way:
X + Y-Z → X-Z + Y</span>
1. Solid
2. Liquid
3. Gas
4. Plasma