Answer:
The new pressure is 0.5 atm
Explanation:
Step 1: Data given
Volume of oxygen = 300 mL = 0.300 L
Pressure = 1.00 atm
Temperature = 300 K
The volume increases to 1000mL = 1.00 L
The temperature increases to 500 K
Step 2: Calculate the new pressure
(P1*V1)/T1 = (P2*V2)/T2
⇒with P1 = the initial pressure = 1.00 atm
⇒with V1 = the initial volume = 0.300 L
⇒with T1 = the initial temperature = 300 K
⇒with P2 = the new pressure = TO BE DETERMINED
⇒with V2 = the increased volume = 1.00 L
⇒with T2 = the increased temperature = 500 K
(1.00 atm* 0.300 L)/300 K = (P2 * 1.00L) / 500 K
P2 = (1.00 *0.300 * 500) / (300 *1.00)
P2 = 0.5 atm
The new pressure is 0.5 atm
Answer:
The simulated 1H NMR spectrum for ethyl acetate is shown in the drawing attached.
Explanation:
To construct this NMR it is necessary to identify the essential components that can produce resonance peaks.
Two main groups can be identified, the acetyl group containing a sub-component (CH3) capable of producing a resonance peak, and the ethyl group containing two components (CH2 and CH3) each of which can produce on its own its own resonance peak.
Moles=volume*concentration
=0.1*.83
=.083 Moles of HC2H3O2
Mole ratio between HC2H3O2 and CO2 is 1:1
This means .083 Moles of CO2
Mass =Moles*Rfm of CO2
=.083*(12+16+16)
=3.7grams
Answer : The question is to write the elements alphabetically and seperating them with commas.
So in this case for your question of Fireworks , K

,
The answer will be
K, N, O.
You have to just differentiate the elements and write them according to the alphabetical order.
The reaction between the magnesium, Mg, and the hydrochloric acid, HCl is given in the equation below,
Mg + 2HCl --> H2 + MgCl2
The number of moles of HCl that is needed for the reaction is calculated below.
n = (0.4681 g Mg)(1 mol Mg/24.305 g Mg)(2 mol HCl/1 mol Mg)
n = 0.0385 mols HCl
From the given concentration, we calculate for the required volume.
V = 0.0385 mols HCl/(0.650 mols/L)
V = 0.05926 L or 59.26 mL
<em>Answer: 59.26 mL of HCl</em>