The coefficient in a chemical formula represents the amount of each chemical present. The amount of a substance is measured in moles.
About 8.0 moles of methane.Number of moles = MassMolar mass.
And thus we get the quotient:
128.3⋅g16.04⋅g⋅mol−1=8.0⋅moles of methane.
Note that the expression is dimensionally consistent, we wanted an answer in moles, and the quotients gives, 1mol−1=11mol=mol as required.
Answer:
In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
Explanation:
That is what I think on the subject
Answer:
- The answer is the concentration of an NaOH = 1.6 M
Explanation:
The most common way to solve this kind of problem is to use the formula
In your problem,
For NaOH
C₁ =?? v₁= 78.0 mL = 0.078 L
For H₂SO₄
C₁ =1.25 M v₁= 50.0 mL = 0.05 L
but you must note that for the reaction of NaOH with H₂SO₄
2 mol of NaOH raect with 1 mol H₂SO₄
So, by applying in above formula
- (C₁ * 0.078 L) = (2* 1.25 M * 0.05 L)
- C₁ = (2* 1.25 M * 0.05 L) / (0.078 L) = 1.6 M
<u>So, the answer is the concentration of an NaOH = 1.6 M</u>