Diameter = 0.170 meter
Circumference = 0.170 π meters
530 rpm = 530 circumferences / minute
= (530 x 0.170 π meters) / minute
= 283.06 meter.minute
= 4.72 meters/second
There is still air inside of a house, which is pushing the roof upwards, so the forces are equal and the roof is not crushed.
Answer:
a) The current density ,J = 2.05×10^-5
b) The drift velocity Vd= 1.51×10^-15
Explanation:
The equation for the current density and drift velocity is given by:
J = i/A = (ne)×Vd
Where i= current
A = Are
Vd = drift velocity
e = charge ,q= 1.602 ×10^-19C
n = volume
Given: i = 5.8×10^-10A
Raduis,r = 3mm= 3.0×10^-3m
n = 8.49×10^28m^3
a) Current density, J =( 5.8×10^-10)/[3.142(3.0×10^-3)^2]
J = (5.8×10^-10) /(2.83×10^-5)
J = 2.05 ×10^-5
b) Drift velocity, Vd = J/ (ne)
Vd = (2.05×10^-5)/ (8.49×10^28)(1.602×10^-19)
Vd = (2.05×10^-5)/(1.36 ×10^10)
Vd = 1.51× 10^-5
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4