Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:

Answer: Machanical advantage of the machine is 1.86
Explanation: Machanical advantage of a machine is the ratio of the Force to overcome which is the load in this case 24kg * 10= 240N to the force exerted(Effort) to overcome the load in this case 129N.
So, we have
MA = load/effort
= 240N/129N
= 1.86.
The car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.
Answer:
Explanation:
Momentum is measured as the product of mass of object with the velocity attained by that object.
Momentum of 2000 kg truck = Mass × Velocity
Momentum of 2000 kg truck = 2000×30 = 60000 N
Similarly, the momentum of 1000 kg car will be 1000× velocity of the 1000 kg car.
Since, it is stated that momentum of 2000 kg truck is equal to the momentum of 1000 kg of car, then the velocity of 1000 kg of car can be determined by equating the momentum of car and truck.
Momentum of 2000 kg truck = Momentum of 1000 kg car
60000=1000×velocity of 1000 kg car
Velocity of 1000 kg car = 60000/1000=60 m/s
So, the car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.
Answer:
Yes
Explanation:
Newton's law of universal gravitation is usually stated that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses(m1 and m2) and inversely proportional to the square of the distance between their centers(r).
F = Gm1m2/r²
This is a general physical law derived from
empirical observations by what Isaac Newton called inductive reasoning.
when distance is doubled the gravitational force will be reduced by quarter not half.