According to Henry's law, solubility of solution is directly proportional to partial pressure thus,

Solubility at pressure 3.08 atm is 72.5/100, solubility at pressure 8 atm should be calculated.
Putting the values in equation:

On rearranging,

Therefore, solubility will be 1.88 mg of
gas in 1 g of water or, 188 mg of tex]N_{2}[/tex] gas in 100 g of water.
In this case, we are going to assume that there are 100 atoms to make things easier.
Let R% be the abundance of n-15. With this in mind, we calculate the abundance of n-14 to be 100%-R%
14.0031*(100-R)% + 15.001 * R%= 14.00674
In this case, we can delete or ignore the % sign since we do not want to carry it around, however, we need to keep in mind that the final answer is in %
14.0031*(100-R) + 15.001 * R= 14.00674
1400.31-14.0031R+15.001R=1400.674
0.9979R=0.364
R=0.3648
Then, the abundance of n-15 is 0.3648%
It would decrease because they will be using less of their AC now that they've improved insulation.
Ice caps would float therefore providing insulation for aquatic life and ensuring they do not freeze due to the cool temperature.