Answer:
44 g
Explanation:
The formula for the number of moles (n) is equal to
.
Since we need to find the mass, we derive it from the formula of the number of moles and we get that mass = n x molecular weight .
The molecular weight of
= 12 g/mol (from the carbon) + 19x4 g/mol (from the 4 fluorine atoms)= 88 g/mol
We plug in the numbers in the derived formula for the mass and we get :
mass = n x molecular weight = 0.5 mol x 88 g/mol = 44 g
Answer:
I have for Decompostion
Explanation:
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation: AB → A + B. In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction
The HNO3 is considered to be a Bronsted - Lowry acid, when this substance 'HNO3', will donate a proton, then it will form another substance. It will form two substances when the proton is donated in the water molecule. The two substances that will be formed is a nitrate iron and a hydronium ion.
<u>Answer:</u> The coefficient of carbon in the chemical reaction is 1.
<u>Explanation:</u>
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
The chemical equation for the reaction of tin (IV) oxide and carbon follows:

By Stoichiometry of the reaction:
1 mole of tin (IV) oxide reacts with carbon to produce 1 mole of elemental tin and carbon dioxide.
Hence, the coefficient of carbon in the chemical reaction is 1.
Ba²⁺ + 2Cl⁻ + 2H⁺ + SO₄²⁻ = BaSO₄ (precipitate) + 2H⁺ + 2Cl⁻
Ba²⁺ + SO₄²⁻ = BaSO₄