Enzymes catalyze the chemical reactions, they act upon the reaction substrates and speed up the reaction. Enzymes have active sites, the places where the reaction substrates interact with the enzyme bringing about the conversion of substrates to products. So, as the enzyme concentration increases the rate of reaction increases till a point where the rate is leveled off. The rate does not further increase, as the substrate might have become limiting at that point. All the available amount of substrate would have been associated with the active sites of the enzymes. So, at that point although there is enough catalyst, lack of substrate would limit the rate of reaction.
Muscles bones no on organs and no on skin
At STP (standard temperature and pressure conditions), 1 mol of any gas occupies 22.4 L
This rule is applied to O₂
22.4 L volume occupied by 1 mol
Therefore 83.4 L occupied by - 1/ 22.4 x 83.4 = 3.72 mol
stoichiometry of O₂ to H₂O is 1:2
then the number of moles of water produced - 3.72 mol x 2= 7.44 mol
mass of water produced - 7.44 mol x 18.01 g/mol = 134.1 g
correct answer is D
Answer:
[H3O+] = 1.0*10^-12 M
[OH-] = 0.01 M
Explanation:
We can use the following equation to find the hydronium ion concentration. Plug in the pH and solve for H3O+.
pH = -log[H3O+]
<u>[H3O+] = 1.0*10^-12 M</u>
Now, to find the hydroxide ion concentration we will use the two following equations.
14 = pH + pOH
pOH = -log[OH-]
14 = 12 + pOH
pOH = 2
2 = -log[OH-]
<u>[OH-] = 0.01 M</u>