1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
3 years ago
7

Two metal disks, one with radius R1 = 2.45 cm and mass M1 = 0.900 kg and the other with radius R2 = 5.00 cm and mass M2 = 1.60 k

g, are welded together and mounted on a frictionless axis through their common center. A light string is wrapped around the edge of the smaller disk and a 1.60 kg block is suspended from the free end of the string. (a) What is the magnitude of the downward acceleration of the block after it is released? (b) Repeat the calculation of part (a), this time with the string wrapped around the edge of the larger disk.

Physics
1 answer:
natima [27]3 years ago
5 0

Answer:

part (a) a_1\ =\ 2.9\ kg

Part (b) a_2\ =\ 6.25\ kg

Explanation:

Given,

  • mass of the smaller disk = M_1\ =\ 0.900\ kg
  • Radius of the smaller disk = R_1\ =\ 2.45\ cm\ =\ 0.0245\ m
  • mass of the larger disk = M_2\ =\ 1.6\ kg
  • Radius of the larger disk =R_2\ =\ 5.0\ cm\ =\ 0.05\ m
  • mass of the hanging block = m = 1.60 kg

Let I be the moment of inertia of the both disk after the welding,\therefore I\ =\ I_1\ +\ I_2\\\Rightarrow I\ =\ \dfrac{1}{2}(M_1R_1^2\ +\ M_2R_2^2)\\\Rightarrow I\ =\ 0.5\times (0.9\times 0.0245^2\ +\ 1.6\times 0.05^2)\\\Rightarrow I\ =\ 2.27\times 10^{-3}\ kgm^2

part (a)

A block of mass m is hanging on the smaller disk,

From the f.b.d. of the block,

Let 'a' be the acceleration of the block and 'T' be the tension in the string.

mg\ -\ T\ =\ mg\\\Rightarrow T\ =\ mg\ -\ ma\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (1)

Net torque on the smaller disk,

\therefore \tau\ =\ I\alpha\\\Rightarrow TR_1\ =\ \dfrac{Ia}{R_1}\\\Rightarrow T\ =\ \dfrac{Ia}{R_1^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,enq (2)

From eqn (1) and (2), we get,

mg\ -\ ma\ =\ \dfrac{Ia}{R_1^2}\\\Rightarrow a\ =\ \dfrac{mg}{\dfrac{I}{R_1^2}\ +\ m}\\\Rightarrow a\ =\ \dfrac{1.60\times 9.81}{\dfrac{2.27\times 10^{-3}}{0.027^2}\ +\ 1.60}\\\Rightarrow a\ =\ 2.91\ m/s^2

part (b)

In this case the mass is rapped on the larger disk,

From the above expression of the acceleration of the block, acceleration is only depended on the radius of the rotating disk,

Let 'a_2' be the acceleration of the block in the second case,

From the above expression,

\therefore a\ =\ \dfrac{mg}{\dfrac{I}{R_1^2}\ +\ m}\\\Rightarrow a\ =\ \dfrac{1.60\times 9.81}{\dfrac{2.27\times 10^{-3}}{0.05^2}\ +\ 1.60}\\\Rightarrow a\ =\ 6.25\ m/s^2

You might be interested in
What happens in a tug of war if the net forces are balanced and why?
FinnZ [79.3K]

Answer:

Balanced forces are responsible for unchanging motion. Balanced forces are forces where the effect of one force is cancelled out by another. A tug of war, where each team is pulling equally on the rope, is an example of balanced forces. The forces exerted on the rope are equal in size and opposite in direction.

Explanation:

6 0
4 years ago
Two identical peaches, Peach 1 and Peach 2, fall from a cliff at time t=0t=0t, equals, 0 from the same height. Peach 1 is droppe
Hunter-Best [27]

Answer: The correct answer is graph A.

Explanation:

See Khan Academy.

4 0
3 years ago
Read 2 more answers
Which properties of a lava lamp are important to remember when modeling convection?
Luba_88 [7]
Important thing when making a lava lamp are the two liquids with different density so that it would not mix and that it would expand when heated. The movement of the orange liquid is called convection. if you will not heat the orange one, it till just stay on the stop and not go under tha water.
5 0
3 years ago
In the heat equation, what does c represent
Bingel [31]
Heat equation, Q = m.c.Δt
Here, c represents " the specific heat of the substance "

Hope this helps!
5 0
3 years ago
Read 2 more answers
2. Can you place three forces of 5g, 6g, and 12g so they are in equilibrium. Justify your answer.
Bond [772]

Answer:

We cannot place three forces of 5g, 6g, and 12g in equilibrium.

Explanation:

Equilibrium means their sum must be zero.

Here the forces are 5g, 6g, and 12g.

For number of forces to be in equilibrium the magnitude of largest vector should be less than sum of the magnitude of other vectors.

Here

        Magnitude of largest force = 12 g

        Sum of magnitudes of other forces = 5g + 6g = 11g

       Magnitude of largest force >   Sum of magnitudes of other forces

So this forces cannot form equilibrium.

We cannot place three forces of 5g, 6g, and 12g in equilibrium.

4 0
3 years ago
Other questions:
  • If an object has zero acceleration, does it have to have zero velocity?
    14·1 answer
  • While trying out for the position of pitcher on your high school baseball team, you throw a fastball at 87.6 mi/h toward home pl
    10·1 answer
  • A 20.0 μf capacitor is charged to a potential difference of 850 v. the terminals of the charged capacitor are then connected to
    14·1 answer
  • How does work affect energy between objects so it can cause a change in the form of energy?
    15·1 answer
  • A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km. The trip to
    13·1 answer
  • You are standing on the ground, watching a bird fly away horizontally at a rate of 9 meters per second. The bird is initially lo
    11·1 answer
  • What do you do abt onion eyes (MY EYES ARE BURNING BADDD)
    6·1 answer
  • A person travelled 350 m east from his home and returns back home an hour has displacement of_?​
    10·1 answer
  • A 20 kg box has an initial velocity of 2 m/s starting at the bottom of a 30-degree inclined plane. A person pushes on the box di
    8·1 answer
  • An elevator cabin has a mass of 358.1 ݇݃, and the combined mass of the people inside the cabin is 169.2 ݇݃. The cabin is puled u
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!