By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617
The first thing to do is to define the origin of the coordinate system as the point at which the moped journey begins.
Then, you must write the position vector:
r = -3j + 4i + 3j
Rewriting
r = 4i
To go back to where you started, you must go
d = -4i
That is to say, must travel a distance of 4Km to the west.
Answer
West, 4km.
The instantenous velocity is just the slope of the graph at a certain instant. Since the graph is a straight line, its instantenous velocity is uniform through out. v = dx / dt = (40 - 10) / (50 - 0) = 0.6 m/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
i cant see the the pic its glitched post a new one i will help
Explanation: