Answer:
<h2>7.54 atm </h2>
Explanation:
The required pressure can be found by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
From the question we have

We have the final answer as
<h3>7.54 atm </h3>
Hope this helps you
Explanation:
Well i mean clothes so cells make tissues which help organs clothes can technically help you if you fall it has layers so it woulf be as a cell?
The mass of sodium sulphate, Na₂SO₄, required to prepare the solution is 10.65 g
<h3>How to determine the mole of sodium sulphate Na₂SO₄</h3>
- Volume = 250 mL = 250 / 1000 = 0.25 L
- Molarity = 0.3 M
Mole = Molarity x Volume
Mole of Na₂SO₄ = 0.3 × 0.25
Mole of Na₂SO₄ = 0.075 mole
<h3>How to determine the mass of sodium sulphate Na₂SO₄</h3>
- Molar mass of Na₂SO₄ = 142.05 g/mol
- Mole of Na₂SO₄ = 0.075 mole
Mass = mole × molar mass
Mass of Na₂SO₄ = 0.075 × 142.05
Mass of Na₂SO₄ = 10.65 g
Thus, 10.65 g of Na₂SO₄ is needed to prepare the solution.
Learn more about molarity:
brainly.com/question/15370276
I’m pretty positive the answer is True
Answer:
0.03atm
Explanation:
Given parameters:
Total pressure = 780torr
Partial pressure of water vapor = 1.0atm
Unknown:
Partial pressure of radon = ?
Solution:
A sound knowledge of Dalton's law of partial pressure will help solve this problem.
The law states that "the total pressure of a mixture of gases is equal to the sum of the partial pressures of the constituent gases".
Mathematically;
P
= P
+ P
+ P
Since the total pressure is 780torr, convert this to atm;
760torr = 1 atm
780torr =
atm = 1.03atm
For this problem;
Total pressure = Partial pressure of radon + Partial pressure of water vapor
1.03 = Partial pressure of radon + 1.0
Partial pressure of radon = 1.03 - 1.00 = 0.03atm