Explanation:
1.
Weathering is the physical disintegration and chemical decomposition of rocks to form sediments and soils whereas erosion is the movement of weathered materials from one area to the other.
Erosion moves weathered materials and it causes them to change position. For example loose chips of rocks broken down as the rock weakens through alternate wetting and drying in tropical regions will remain in-situ until the agents of erosion comes to carry them away. The breaking is weathering and the carrying is erosion.
Learn more:
Wind erosion brainly.com/question/2115729
2.
Examples of mechanical weathering:
- Frost action
- Pressure release
Examples of chemical weathering:
There are two types of weathering:
- In mechanical weathering, a rock disintegrates into smaller chunks by the action of wind, water and glacier. For example in temperate and polar regions, water within rocks freezes. When water freezes it expands and causes tension within the rock. When temperature drops, water melts and the tension is relieved. This process causes a rock to crack. The crack will eventually become wider with time.
- In chemical weathering, a rock decomposes by the action of chemicals formed in the rock. In karst regions where limestone forms, combination of rain water and carbon dioxide forms weak carbonic acid that reacts with calcite in limestone.
Learn more:
Erosion brainly.com/question/2473244
#learnwithBrainly
1 L ------- 1000 cm³
1.45 L ----- ???
1.45 * 1000 = 1450 cm³ ( volume )
Density = 0.710 g/cm³
mass = in Kg
m = D * V
m = 0.710 * 1450
m = 1029.5 g
1 Kg ------- 1000 g
kg -------- 1029.5 g
mass = 1029.5 / 1000
mass = 1.0295 Kg
hope this helps!
C ( Porcupines use there’s sharp quills to defend themselves from larger predators!)
Answer:
The pressure changes from 2.13 atm to 1.80 atm.
Explanation:
Given data:
Initial pressure = ?
Final pressure = 1.80 atm
Initial temperature = 86.0°C (86.0 + 273 = 359 K)
Final temperature = 30.0°C (30+273 =303 K)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
P₁ = P₂T₁ /T₂
P₁ = 1.80 atm × 359 K / 303 K
P₁ = 646.2 atm. K /303 K
P₁ = 2.13 atm
The pressure changes from 2.13 atm to 1.80 atm.
Answer:
The Solar System moves through the galaxy with about a 60° angle between the galactic plane and the planetary orbital plane. The Sun appears to move up-and-down and in-and-out with respect to the rest of the galaxy as it revolves around the Milky Way
Explanation:
Hope you like it