Answer:
Temperature
Explanation:
temperatures below 0 degrees celsius will turn water into ice
Temperatures 1 to 99 degrees celsius is water in liquid form
Temperatures of over 100 degrees celsius liquid turns into gas
The answer is; D
While electromagnetic waves travel at an astounding 3.00 x 10^8 m/s and any delay seems imperceptible in short distances, in long distances, the waves take some time to reach the other end. This is why there is usually a small delay when ground communication tries to reach astronauts in space. Also, remember that when a communication is relayed from the earth, it has to reach the destination and then wait for a response back to earth which covers the same distance or longer/shorter if the target is moving.
The distance to the moon is 384,400 km, therefore multiply this by 2 = 768,800 km
768,800,000m/300,000,000m = 2. 56 seconds
Therefore radio waves sent to the moon from earth will have a minimum 2.5 seconds delay not considering the processing time of this communication by the destination before sending feedback. ‘Over to you’ signals end of a message by the messenger hence allowing the other messenger on the other to respond.
Answer:
1. d. The reaction is spontaneous in the reverse direction at all temperatures.
2. c. The reaction is spontaneous at low temperatures.
Explanation:
The spontaneity of a reaction is associated with the Gibbs free energy (ΔG). When ΔG < 0, the reaction is spontaneous. When ΔG > 0, the reaction is non-spontaneous. ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T. ΔS [1]
where,
T is the absolute temperature (T is always positive)
<em>1. What can be said about an Endothermic reaction with a negative entropy change?</em>
If the reaction is endothermic, ΔH > 0. Let's consider ΔS < 0. According to eq. [1], ΔG is always positive. The reaction is not spontaneous in the forward direction at any temperature. This means that the reaction is spontaneous in the reverse direction at all temperatures.
<em>2. What can be said about an Exothermic reaction with a negative entropy change?</em>
If the reaction is exothermic, ΔH < 0. Let's consider ΔS < 0. According to eq. [1], ΔG will be negative when |ΔH| > |T.ΔS|, that is, at low temperatures.
Explanation:
The photic zone, euphotic zone, epipelagic zone, or sunlit zone is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological processes that supply nutrients into the upper water column. The photic zone is home to the majority of aquatic life due to its location.
Photosynthesis in photic zone Edit
In the photic zone, the photosynthesis rate exceeds the respiration rate. This is due to the abundant solar energy which is used as an energy source for photosynthesis by primary producers such as phytoplankton. These phytoplankton grow extremely quickly because of sunlight's heavy influence, enabling it to be produced at a fast rate. In fact, ninety five percent of photosynthesis in the ocean occurs in the photic zone. Therefore, if we go deeper, beyond the photic zone, such as into the compensation point, there is little to no phytoplankton, because of insufficient sunlight.[1] The zone which extends from the base of the euphotic zone to about 200 meters is sometimes called the dysphotic zone.[2]
follow me ok nice study ☺️☺️☺️
A covalent bond means shared electrons between atoms. This is similar to kids sharing markers because the markers (electrons) are being shared between the kids (atoms). Covalent bonds are different than this metaphor because 1) the electrons are constantly moving about while the kids can steal and keep the markers and 2) the electrons and atoms are physically smaller