The pressure caused by water is: P = P0 + bgh = 1.013×10^5 + 10^3×9.81 × 1.5 = 1.18 atm
F = m · a
In order to accelerate 82 kg upward at the rate of 3.2 m/s², a NET upward force of (82kg · 3.2m/s²) = 262.4 Newtons is required.
But if the object is on or near the surface of the Earth, then there's a downward force of (82kg · 9.8m/s²) = 803.6 N already acting on it because of gravity.
So you need to apply (803.6N + 262.4N) = <em>1,066 Newtons UPward</em>, in order to cancel its own weight and accelerate it upward at that rate.
Answer:
The velocity of the light will be 1.0c only
Explanation:
The velocity of the light measured in the case given in question will be 1.0c only.
This is due to the fact that the velocity of light is never relative. The velocity of the light is maximum
The velocity of the light cannot be scaled down in no case
Thus, the velocity of the light remains as constant.
Hence, the velocity of the light measured will be 1.0c although the ships have relative velocity.
Hi pupil here's your answer ::
_______________________________
Newton's Second Law of motion states that the rate of change of momentum of an object is proportional to the applied unbalanced force in the direction of the force.
ie., F=ma
Where F is the force applied, m is the mass of the body, and a, the acceleration produced.
Or in simplest language it is the force applied to a particular object of particular mass multiplied by the acceleration caused by force .
______________________________
hope that it helps. . . . . .
Answer:
Explanation:
Average speed = Total distance / Total time.
100 km/hr
r = 100 km / hr
t = 6 hours
d = 6 * 100 = 600 km
120 km / hr
r = 120 km / hr
t = 5 hour
d = 120 * 5
d = 600 km
Total distance = 600 + 600 = 1200 km
Total time = 5 hour + 6 hours = 11 hours.
Average speed = 1200 km / 11 hours = 109.1