The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.
Em = K + U
Let's write the energy in two points.
Starting point. Highest part of the oscillation
Em₀ = U = m g h
Final point. Lower part of the movement
= K = ½ m v²
Energy is conserved.
Emo =
m g h = ½ m v²
v² = 2 gh
Let's use trigonometry to find the height, see attached.
h = L - L cos θ
h = L (1- cos θ)
They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.
h = 3.7 (1- cos 48)
h = 1.22 m
this is the maximum height of the movement.
Let's calculate the velocity.
v = 4.89 m / s
In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
Learn more here: brainly.com/question/13010190
Oxygen and Neon have the same number of valence electrons because both the compounds are in the same group and the outer orbital of both the compounds consists of 6 electrons
Answer:
A 1.0 min
Explanation:
The half-life of a radioisotope is defined as the time it takes for the mass of the isotope to halve compared to the initial value.
From the graph in the problem, we see that the initial mass of the isotope at time t=0 is

The half-life of the isotope is the time it takes for half the mass of the sample to decay, so it is the time t at which the mass will be halved:

We see that this occurs at t = 1.0 min, so the half-life of the isotope is exactly 1.0 min.
Answer:

Explanation:
We know that when we don't have air friction on a free fall the mechanical energy (I will symbololize it with ME) is equal everywhere. So we have:

where me(1) is mechanical energy while on h=10m
and me(2) is mechanical energy while on the ground
Ek(1) + DynamicE(1) = Ek(2) + DynamicE(2)
Ek(1) is equal to zero since an object that has reached its max height has a speed equal to zero.
DynamicE(2) is equal to zero since it's touching the ground
Using that info we have

we divide both sides of the equation with mass to make the math easier.

The lithosphere because it includes the outer region of the earth including the crust and outer mantle