This question may require more information to provide a more accurate answer.
A fault block mountain range is formed by tension as rocks are pulled away from each other. A fault block is a section of rock bounded on at least two sides by faults.
Faults commonly break the crust into large, fault bounded blocks. If normal faults down drop one fault block relative to other blocks on either side, the resulting feature is called a Graben.
A block that is uplifted relative to blocks in either side is called a horst.
Answer:
SRY I CAN'T ANS :( and hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2500
--------=3125
0.8
This can be can be viewed as compression due to the direction of the arrows.
Answer:
Explanation:
Given that,
Initial angular velocity is 0
ωo=0rad/s
It has angular velocity of 11rev/sec
ωi=11rev/sec
1rev=2πrad
Then, wi=11rev/sec ×2πrad
wi=22πrad/sec
And after 30 revolution
θ=30revolution
θ=30×2πrad
θ=60πrad
Final angular velocity is
ωf=18rev/sec
ωf=18×2πrad/sec
ωf=36πrad/sec
a. Angular acceleration(α)
Then, angular acceleration is given as
wf²=wi²+2αθ
(36π)²=(22π)²+2α×60π
(36π)²-(22π)²=120πα
Then, 120πα = 8014.119
α=8014.119/120π
α=21.26 rad/s²
Let. convert to revolution /sec²
α=21.26/2π
α=3.38rev/sec
b. Time Taken to complete 30revolution
θ=60πrad
∆θ= ½(wf+wi)•t
60π=½(36π+22π)t
60π×2=58πt
Then, t=120π/58π
t=2.07seconds
c. Time to reach 11rev/sec
wf=wo+αt
22π=0+21.26t
22π=21.26t
Then, t=22π/21.26
t=3.251seconds
d. Number of revolution to get to 11rev/s
∆θ= ½(wf+wo)•t
∆θ= ½(0+11)•3.251
∆θ= ½(11)•3.251
∆θ= 17.88rev.