1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
2 years ago
15

HELP PLEASE DUE IN 3 MINUTES

Physics
1 answer:
diamong [38]2 years ago
6 0

Answer:

tectonic plate movement

Explanation:

You might be interested in
Which of the following is the best definition of lifestyle activity?
Bezzdna [24]
It d bro it’s d bro it’s d
3 0
3 years ago
A mole of ideal gas expands at T=27 °C. The pressure changes from 20 atm to 1 atm. What’s the work that the gas has done and wha
Airida [17]

Answer:

  • The work made by the gas is 7475.69 joules
  • The heat absorbed is 7475.69 joules

Explanation:

<h3>Work</h3>

We know that the differential work made by the gas  its defined as:

dW =  P \ dv

We can solve this by integration:

\Delta W = \int\limits_{s_1}^{s_2}\,dW = \int\limits_{v_1}^{v_2} P \ dv

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law

P \ V = \ n \ R \ T

P = \frac{\ n \ R \ T}{V}

This give us

\int\limits_{v_1}^{v_2} P \ dv = \int\limits_{v_1}^{v_2} \frac{\ n \ R \ T}{V} \ dv

As n, R and T are constants

\int\limits_{v_1}^{v_2} P \ dv = \ n \ R \ T \int\limits_{v_1}^{v_2} \frac{1}{V} \ dv

\Delta W= \ n \ R \ T  \left [ ln (V) \right ]^{v_2}_{v_1}

\Delta W = \ n \ R \ T  ( ln (v_2) - ln (v_1 )

\Delta W = \ n \ R \ T  ( ln (v_2) - ln (v_1 )

\Delta W = \ n \ R \ T  ln (\frac{v_2}{v_1})

But the volume is:

V = \frac{\ n \ R \ T}{P}

\Delta W = \ n \ R \ T  ln(\frac{\frac{\ n \ R \ T}{P_2}}{\frac{\ n \ R \ T}{P_1}} )

\Delta W = \ n \ R \ T  ln(\frac{P_1}{P_2})

Now, lets use the value from the problem.

The temperature its:

T = 27 \° C = 300.15 \ K

The ideal gas constant:

R = 8.314 \frac{m^3 \ Pa}{K \ mol}

So:

\Delta W = \ 1 mol \ 8.314 \frac{m^3 \ Pa}{K \ mol} \ 300.15 \ K  ln (\frac{20 atm}{1 atm})

\Delta W = 7475.69 joules

<h3>Heat</h3>

We know that, for an ideal gas, the energy is:

E= c_v n R T

where c_v its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.

By the first law of thermodynamics, we know

\Delta E = \Delta Q - \Delta W

where \Delta W is the Work made by the gas (please, be careful with this sign convention, its not always the same.)

So:

\Delta E = 0

\Delta Q = \Delta W

7 0
2 years ago
R S ( M ) = 2 G M c 2 , where G is the gravitational constant and c is the speed of light. It is okay if you do not follow the d
padilas [110]

The provided question's answer is "Schwarzschild radius".

The conversion factor between mass and energy is the speed of light squared.

GM/r stands for gravitational potential energy, also known as energy per unit mass.

GM/rc² then has "mass per unit mass" units. In other words, as mass/mass splits out in a dimensional analysis, "dimensionless per unit."

The derivation yields a formula for time or space coordinate ratios requiring sqrt(1 - 2GM/rc²). This number becomes 0 when r=2GM/c2, or the formula becomes infinite if in the denominator. However, there is no justification for using c² as a conversion factor there. Consider the initial expression sqrt(1 - 2GM/rc²).

Assume that m is used as the test particle's mass instead of 1. Then you have sqrt(m - 2GMm/rc² and mass units. This expression denotes that the rest energy of the test mass m you introduced into the gravitational field is "gone" at that radius.

The 2 would be absent if the gravitational field were Newtonian. However, at the event horizon, Einstein gravity is slightly stronger than Newton gravity, resulting in the factor 2 in qualitative terms.

So, the given equation is of Schwarzschild radius.

Learn more about Schwarzschild radius here:

brainly.com/question/12647190

#SPJ10

3 0
2 years ago
An object of mass 25 kg acted upon by a net force of 10 N will experience an acceleration of?
Zolol [24]

Answer:

0.4 m/s2

Explanation:

mass: 25kg

net force: 10 N

acceleration: ?

net force ÷ by mass= acceleration

10 N ÷ 25 Kg = 0.4 m/s2

6 0
2 years ago
A cyclist rides 6.3 km east for 21 minutes, then he turns and heads west for 6 minutes and 1.8 km. Finally, he rides east for 13
Leona [35]

Answer:

\vec{d}=17.7km

Explanation:

Displacement is a vector that defines the position of a particle. The vector extends from the initial position to the final position. Therefore, the displacement only takes into account this positions, since its trajectory is not important:

\vec{d}=6.3km-1.8km+13.2km\\\vec{d}=17.7km

6 0
3 years ago
Other questions:
  • A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformati
    13·1 answer
  • Dalton’s theory was identified using light microscope images of atoms. the experimental results of other scientists. water vapor
    5·2 answers
  • Will water pressure be greater at the bottom of a container that you put a hole in or at the top of a container?
    13·1 answer
  • There is no difference between the question and hypothesis steps of scientific inquiry true or false
    8·2 answers
  • What is the full definition of specific heat?
    15·2 answers
  • Describe what happens to chromosomes before mitosis.
    14·1 answer
  • - 4x4 – 13x3 + 8x2 – 21x + 18 is divided by 2 – 3?
    13·2 answers
  • If a net force is acting on an object, then the object is definitely
    9·1 answer
  • 5. Which of the following best supports a scientific
    9·2 answers
  • Find the speed of a satellite in a circular orbit around the Earth with a radius 3.57 times the mean radius of the Earth. (Radiu
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!