It is formed by the impact of meteorites on the body’s surface. The force of the collision melts some of the impacted regolith to form objects.
Mercury's natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) could mercury naturally exist?
Liquid is the answer
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:
where m is the ball's mass and v its initial velocity, 20 m/s.
When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:
for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have
From which we find the maximum height of the ball:
Therefore, the answer is
yes, the ball will reach the top of the tree.
Answer:
Fr = 26.83 [N]
Explanation:
To solve this problem we must use the Pythagorean theorem, since the forces are vector quantities, that is, they have magnitude and density. Therefore the Pythagorean theorem is suitable for the solution of this problem.
Answer:
the volume is 0.253 cm³
Explanation:
The pressure underwater is related with the pressure in the surface through Pascal's law:
P(h)= Po + ρgh
where Po= pressure at a depth h under the surface (we assume = 1atm=101325 Pa) , ρ= density of water ,g= gravity , h= depth at h meters)
replacing values
P(h)= Po + ρgh = 101325 Pa + 1025 Kg/m³ * 9.8 m/s² * 20 m = 302225 Pa
Also assuming that the bubble behaves as an ideal gas
PV=nRT
where
P= absolute pressure, V= gas volume ,n= number of moles of gas, R= ideal gas constant , T= absolute temperature
therefore assuming that the mass of the bubble is the same ( it does not absorb other bubbles, divides into smaller ones or allow significant diffusion over its surface) we have
at the surface) PoVo=nRTo
at the depth h) PV=nRT
dividing both equations
(P/Po)(V/Vo)=(T/To)
or
V=Vo*(Po/P)(T/To) = 0.80 cm³ * (101325 Pa/302225 Pa)*(277K/293K) = 0.253 cm³
V = 0.253 cm³