Milliliters if you're doing science.
They'll vibrate at their characteristic resonant frequency. That depends on the material the object is made of and its shape.
voltage across 2.0μf capacitor is 5.32v
Given:
C1=2.0μf
C2=4.0μf
since two capacitors are in series there equivalent capacitance will be
[tex] \frac{1}{c} = \frac{1}{c1} + \frac{1}{c2} [/tex]


=1.33μf
As the capacitance of a capacitor is equal to the ratio of the stored charge to the potential difference across its plates, giving: C = Q/V, thus V = Q/C as Q is constant across all series connected capacitors, therefore the individual voltage drops across each capacitor is determined by its its capacitance value.
Q=CV
given,V=8v


charge on 2.0μf capacitor is


=5.32v
learn more about series capacitance from here: brainly.com/question/28166078
#SPJ4
150*4=600
So the answer is 600
Answer:
Option A nuclear
Explanation:
The rate of electricity production in nuclear power plant is much higher as compared to the rate of electricity generation in gas, wind and solar power plants.
Thus, in case where large amount of electricity is to be produced in a short period then one must rely on nuclear power plants.
Therefore, option A is correct